Maximal arithmetic progressions in random subsets

被引:3
|
作者
Benjamini, Itai
Yadin, Ariel
Zeitouni, Ofer
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2007年 / 12卷
关键词
Arithmetic progression; Chen-Stein method; Dependency graph; Extreme type limit distribution; Random subset;
D O I
10.1214/ECP.v12-1321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let U-( N) denote the maximal length of arithmetic progressions in a random uniform subset of {0,1}(N). By an application of the Chen-Stein method, we show that U-(N)-2 log N/log2 converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length W-(N) of arithmetic prorpgressions (mod N). When considered in the natural way on a common probability space, we observe that U-(N)/logN converges almost surely to 2/log2, while W-(N)/logN does not converge almost surely (and in particular, lim sup W-(N)/log N >= 3/log 2).
引用
收藏
页码:365 / 376
页数:12
相关论文
共 50 条
  • [21] Arithmetic progressions and Pellian equations
    Aguirre, Julian
    Dujella, Andrej
    Carlos Peral, Juan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (04): : 683 - 695
  • [22] Covering intervals with arithmetic progressions
    P. Balister
    B. Bollobás
    R. Morris
    J. Sahasrabudhe
    M. Tiba
    Acta Mathematica Hungarica, 2020, 161 : 197 - 200
  • [23] Quotients of primes in arithmetic progressions
    Micholson, Ace
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2012, 18 (02) : 56 - 57
  • [24] Distinct distances and arithmetic progressions
    Dumitrescu, Adrian
    DISCRETE APPLIED MATHEMATICS, 2019, 256 : 38 - 41
  • [25] The divisor problem for arithmetic progressions
    李红泽
    ChineseScienceBulletin, 1995, (04) : 265 - 267
  • [26] Longest arithmetic progressions of palindromes
    Pongsriiam, Prapanpong
    JOURNAL OF NUMBER THEORY, 2021, 222 : 362 - 375
  • [27] On the Partitions of a Number into Arithmetic Progressions
    Munagi, Augustine O.
    Shonhiwa, Temba
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (05)
  • [28] Covering intervals with arithmetic progressions
    Balister, P.
    Bollobas, B.
    Morris, R.
    Sahasrabudhe, J.
    Tiba, M.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) : 197 - 200
  • [29] Arithmetic progressions, quasi progressions, and Gallai-Ramsey colorings
    Mao, Yaping
    Ozeki, Kenta
    Robertson, Aaron
    Wang, Zhao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 193
  • [30] ON ARITHMETIC PROGRESSIONS ON GENUS TWO CURVES
    Ulas, Maciej
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) : 971 - 980