Maximal arithmetic progressions in random subsets

被引:3
|
作者
Benjamini, Itai
Yadin, Ariel
Zeitouni, Ofer
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2007年 / 12卷
关键词
Arithmetic progression; Chen-Stein method; Dependency graph; Extreme type limit distribution; Random subset;
D O I
10.1214/ECP.v12-1321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let U-( N) denote the maximal length of arithmetic progressions in a random uniform subset of {0,1}(N). By an application of the Chen-Stein method, we show that U-(N)-2 log N/log2 converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length W-(N) of arithmetic prorpgressions (mod N). When considered in the natural way on a common probability space, we observe that U-(N)/logN converges almost surely to 2/log2, while W-(N)/logN does not converge almost surely (and in particular, lim sup W-(N)/log N >= 3/log 2).
引用
收藏
页码:365 / 376
页数:12
相关论文
共 50 条
  • [1] On the maximal length of arithmetic progressions
    Zhao, Minzhi
    Zhang, Huizeng
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 21
  • [2] Bivariate fluctuations for the number of arithmetic progressions in random sets
    Barhoumi-Andreani, Yacine
    Koch, Christoph
    Liu, Hong
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [3] On the maximal length of two sequences of integers in arithmetic progressions with the same prime divisors
    Balasubramanian, R
    Langevin, M
    Shorey, TN
    Waldschmidt, M
    MONATSHEFTE FUR MATHEMATIK, 1996, 121 (04): : 295 - 307
  • [4] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [5] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [6] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [7] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626
  • [8] Powers in arithmetic progressions
    Hajdu, Lajos
    Tengely, Szabolcs
    RAMANUJAN JOURNAL, 2021, 55 (03): : 965 - 986
  • [9] Arithmetic progressions in sumsets
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 584 - 597
  • [10] Discrepancy in modular arithmetic progressions
    Fox, Jacob
    Xu, Max Wenqiang
    Zhou, Yunkun
    COMPOSITIO MATHEMATICA, 2022, 158 (11) : 2082 - 2108