Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance

被引:196
|
作者
Mahmood, Tahir [1 ,2 ]
Khalid, Shiguftah [2 ,3 ]
Abdullah, Muhammad [2 ]
Ahmed, Zubair [3 ]
Shah, Muhammad Kausar Nawaz [2 ]
Ghafoor, Abdul [4 ]
Du, Xiongming [1 ,5 ]
机构
[1] CAAS, ICR, State Key Lab Cotton Biol, Anyang 455000, Peoples R China
[2] Pir Mehar Ali Shah Arid Agr Univ, Dept Plant Breeding & Genet, Rawalpindi 46000, Pakistan
[3] Pakistan Agr Res Council, NARC, Islamabad 44000, Pakistan
[4] Pakistan Agr Council PARC, Plant Sci Div, Islamabad 44000, Pakistan
[5] Zhengzhou Univ, Sch Agr Sci, Zhengzhou 450001, Peoples R China
关键词
cellular stress signaling; drought stress responses; functional genomics; gene identification tools; drought tolerance; cotton molecular genetic basis; Gossypium; TRANSGENIC NICOTIANA-BENTHAMIANA; TRANSCRIPTION FACTOR GENE; ACTIVATED PROTEIN-KINASE; QUANTITATIVE TRAIT LOCI; GOSSYPIUM-HIRSUTUM L; GENOME-WIDE ANALYSIS; ABIOTIC STRESS; SALT TOLERANCE; ENHANCES DROUGHT; IMPROVES DROUGHT;
D O I
10.3390/cells9010105
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Drought stress restricts plant growth and development by altering metabolic activity and biological functions. However, plants have evolved several cellular and molecular mechanisms to overcome drought stress. Drought tolerance is a multiplex trait involving the activation of signaling mechanisms and differentially expressed molecular responses. Broadly, drought tolerance comprises two steps: stress sensing/signaling and activation of various parallel stress responses (including physiological, molecular, and biochemical mechanisms) in plants. At the cellular level, drought induces oxidative stress by overproduction of reactive oxygen species (ROS), ultimately causing the cell membrane to rupture and stimulating various stress signaling pathways (ROS, mitogen-activated-protein-kinase, Ca2+, and hormone-mediated signaling). Drought-induced transcription factors activation and abscisic acid concentration co-ordinate the stress signaling and responses in cotton. The key responses against drought stress, are root development, stomatal closure, photosynthesis, hormone production, and ROS scavenging. The genetic basis, quantitative trait loci and genes of cotton drought tolerance are presented as examples of genetic resources in plants. Sustainable genetic improvements could be achieved through functional genomic approaches and genome modification techniques such as the CRISPR/Cas9 system aid the characterization of genes, sorted out from stress-related candidate single nucleotide polymorphisms, quantitative trait loci, and genes. Exploration of the genetic basis for superior candidate genes linked to stress physiology can be facilitated by integrated functional genomic approaches. We propose a third-generation sequencing approach coupled with genome-wide studies and functional genomic tools, including a comparative sequenced data (transcriptomics, proteomics, and epigenomic) analysis, which offer a platform to identify and characterize novel genes. This will provide information for better understanding the complex stress cellular biology of plants.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Genetic control of tolerance to drought stress in soybean
    Aamir Saleem
    Isabel Roldán-Ruiz
    Jonas Aper
    Hilde Muylle
    BMC Plant Biology, 22
  • [22] Transcription factors as key molecular target to strengthen the drought stress tolerance in plants
    Manna, Mrinalini
    Thakur, Tanika
    Chirom, Oceania
    Mandlik, Rushil
    Deshmukh, Rupesh
    Salvi, Prafull
    PHYSIOLOGIA PLANTARUM, 2021, 172 (02) : 847 - 868
  • [23] Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants
    Bahadur, Ali
    Batool, Asfa
    Nasir, Fahad
    Jiang, Shengjin
    Qin Mingsen
    Zhang, Qi
    Pan, Jianbin
    Liu, Yongjun
    Feng, Huyuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (17)
  • [24] Genetic engineering approaches to understanding drought tolerance in plants
    Shinwari, Zabta Khan
    Jan, Sohail Ahmad
    Nakashima, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    PLANT BIOTECHNOLOGY REPORTS, 2020, 14 (02) : 151 - 162
  • [25] Genetic engineering approaches to understanding drought tolerance in plants
    Zabta Khan Shinwari
    Sohail Ahmad Jan
    Kazuo Nakashima
    Kazuko Yamaguchi-Shinozaki
    Plant Biotechnology Reports, 2020, 14 : 151 - 162
  • [26] Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance
    Mosfeq-Ul Hasan, Md
    Ma, Fanglu
    Prodhan, Zakaria Hossain
    Li, Feng
    Shen, Hao
    Chen, Yadong
    Wang, Xuede
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)
  • [27] Insights into the Role of GhTAT2 Genes in Tyrosine Metabolism and Drought Stress Tolerance in Cotton
    Mehari, Teame Gereziher
    Tang, Jungfeng
    Gu, Haijing
    Fang, Hui
    Han, Jinlei
    Zheng, Jie
    Liu, Fang
    Wang, Kai
    Yao, Dengbing
    Wang, Baohua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)
  • [28] Insights into molecular links and transcription networks integrating drought stress and nitrogen signaling
    Cerda, Ariel
    Alvarez, Jose M.
    NEW PHYTOLOGIST, 2024, 241 (02) : 560 - 566
  • [29] Drought signaling in plants
    G. Sivakumar Swamy
    Resonance, 1999, 4 (6) : 34 - 44
  • [30] Implications of Abscisic Acid in the Drought Stress Tolerance of Plants
    Ali, Shahid
    Hayat, Kashif
    Iqbal, Amjad
    Xie, Linan
    AGRONOMY-BASEL, 2020, 10 (09):