Spectral isolation of naturally reductive metrics on simple Lie groups

被引:6
|
作者
Gordon, Carolyn S. [1 ]
Sutton, Craig J. [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
Laplacian; Eigenvalue spectrum; Naturally reductive metrics; Symmetric spaces; FLAT TORI; MANIFOLDS; RIGIDITY; EIGENVALUE; LAPLACIAN;
D O I
10.1007/s00209-009-0640-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that within the class of left-invariant naturally reductive metrics M(Nat)(G) on a compact simple Lie group G, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.
引用
收藏
页码:979 / 995
页数:17
相关论文
共 33 条
  • [1] Spectral isolation of naturally reductive metrics on simple Lie groups
    Carolyn S. Gordon
    Craig J. Sutton
    Mathematische Zeitschrift, 2010, 266 : 979 - 995
  • [2] SPECTRAL ISOLATION OF BI-INVARIANT METRICS ON COMPACT LIE GROUPS
    Gordon, Carolyn S.
    Schueth, Dorothee
    Sutton, Craig J.
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (05) : 1617 - 1628
  • [3] Einstein metrics on compact Lie groups which are not naturally reductive
    Arvanitoyeorgos, Andreas
    Mori, Kunihiko
    Sakane, Yusuke
    GEOMETRIAE DEDICATA, 2012, 160 (01) : 261 - 285
  • [4] Einstein metrics on compact Lie groups which are not naturally reductive
    Andreas Arvanitoyeorgos
    Kunihiko Mori
    Yusuke Sakane
    Geometriae Dedicata, 2012, 160 : 261 - 285
  • [5] Non-naturally reductive Einstein metrics on exceptional Lie groups
    Chrysikos, Ioannis
    Sakane, Yusuke
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 116 : 152 - 186
  • [6] Non-naturally reductive Einstein metrics on the compact simple Lie group
    Chen, Zhiqi
    Liang, Ke
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 46 (02) : 103 - 115
  • [7] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Agricola, Ilka
    Ferreira, Ana Cristina
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 895 - 911
  • [8] EINSTEIN METRICS ON COMPACT SIMPLE LIE GROUPS ATTACHED TO STANDARD TRIPLES
    Yan, Zaili
    Deng, Shaoqiang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) : 8587 - 8605
  • [9] Homogeneous Einstein (α, β)-metrics on compact simple Lie groups and spheres
    Yan, Zaili
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 148 : 147 - 160
  • [10] NATURALLY REDUCTIVE PSEUDO-RIEMANNIAN 2-STEP NILPOTENT LIE GROUPS
    Ovando, Gabriela P.
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 147 - 167