Epileptic seizure detection based on the kernel extreme learning machine

被引:13
作者
Liu, Qi [1 ]
Zhao, Xiaoguang [1 ]
Hou, Zengguang [1 ]
Liu, Hongguang [2 ]
机构
[1] Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing, Peoples R China
[2] Chinese Peoples Publ Secur Univ, Inst Crime, Beijing, Peoples R China
关键词
Epileptic EEG; multiple features; ELM; kernel function; Cholesky decomposition; SUPPORT VECTOR MACHINE; FEATURE-EXTRACTION; EEG SIGNALS; ENTROPY; CLASSIFICATION; COEFFICIENTS;
D O I
10.3233/THC-171343
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This paper presents a pattern recognition model using multiple features and the kernel extreme learning machine (ELM), improving the accuracy of automatic epilepsy diagnosis. After simple preprocessing, temporal-and wavelet-based features are extracted from epileptic EEG signals. A combined kernel-function-based ELM approach is then proposed for feature classification. To further reduce the computation, Cholesky decomposition is introduced during the process of calculating the output weights. The experimental results show that the proposed method can achieve satisfactory accuracy with less computation time.
引用
收藏
页码:S399 / S409
页数:11
相关论文
共 21 条
[1]   AUTOMATED DIAGNOSIS OF EPILEPSY USING CWT, HOS AND TEXTURE PARAMETERS [J].
Acharya, U. Rajendra ;
Yanti, Ratna ;
Wei, Zheng Jia ;
Krishnan, M. Muthu Rama ;
Hong, Tan Jen ;
Martis, Roshan Joy ;
Min, Lim Choo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (03)
[2]  
Alotaiby TN, 2015, 2015 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY RESEARCH (ICTRC), P152, DOI 10.1109/ICTRC.2015.7156444
[3]  
Cortes C., 1995, MACHINE LEARN, V1995, P273, DOI DOI 10.1007/BF00994018
[4]  
Gotman J, 1982, CLIN NEUROPHYSIOL, V54, P530, DOI DOI 10.1016/0013-4694
[5]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[6]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[7]   Extreme learning machines: a survey [J].
Huang, Guang-Bin ;
Wang, Dian Hui ;
Lan, Yuan .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (02) :107-122
[8]   Characterization of EEG - A comparative study [J].
Kannathal, N ;
Acharya, UR ;
Lim, CM ;
Sadasivan, P .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (01) :17-23
[9]   Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine [J].
Kumar, Yatindra ;
Dewal, M. L. ;
Anand, R. S. .
NEUROCOMPUTING, 2014, 133 :271-279
[10]   Seizure prediction by nonlinear EEG analysis [J].
Lehnertz, K ;
Mormann, F ;
Kreuz, T ;
Andrzejak, RG ;
Rieke, C ;
David, P ;
Elger, CE .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2003, 22 (01) :57-63