Single Image Super-resolution Using Spatial Transformer Networks

被引:0
|
作者
Wang, Qiang [1 ,2 ]
Fan, Huijie [1 ]
Cong, Yang [1 ]
Tang, Yandong [1 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER) | 2017年
关键词
Spatial Transformer; Super-Resolution; Convolution;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most of the previous models performed well for Single Image Super-Resolution (SISR). In these methods, the Low Resolution (LR) input image is amplified to the size of High Resolution (HR) through bicubic interpolation. However, bicubic interpolation can not represent the high frequency features of images with only one filter. Therefore, in this paper, we used a original framework which can effectively extract the feature maps from the input image space and transform to HR feature maps based on Spatial Transformer Networks (STN). In our STN-SR method, there are three kinds of parameters should be learned from the model: (i) a serial of filters to extract LR image feature maps; (ii)a local small network to learn parameters of the transformation Gamma(theta) (G) and (iii) the filter parameters to restore the HR patchs from the input HR feature maps through a restoring layer. Our model directly focus on the whole image, the proposed STN-SR method does not clip the image into many small size patches, and can use the image gobal message to rebuild more robust local texture. Compared to privious SR methods, the proposed STN-SR method can gain completely real image, while illustrating better edge and texture preservation performance.
引用
收藏
页码:564 / 567
页数:4
相关论文
共 50 条
  • [1] Spatial relaxation transformer for image super-resolution
    Li, Yinghua
    Zhang, Ying
    Zeng, Hao
    He, Jinglu
    Guo, Jie
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (07)
  • [2] Efficient mixed transformer for single image super-resolution
    Zheng, Ling
    Zhu, Jinchen
    Shi, Jinpeng
    Weng, Shizhuang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [3] Spstnet: image super-resolution using spatial pyramid swin transformer network
    Sun, Yemei
    Wang, Jiao
    Yang, Yue
    Zhang, Yan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [4] Spatial Transformer Generative Adversarial Network for Image Super-Resolution
    Rempakos, Pantelis
    Vrigkas, Michalis
    Plissiti, Marina E.
    Nikou, Christophoros
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 399 - 411
  • [5] Spatial and frequency information fusion transformer for image super-resolution
    Zhang, Yan
    Xu, Fujie
    Sun, Yemei
    Wang, Jiao
    NEURAL NETWORKS, 2025, 187
  • [6] Spatial Transformer Generative Adversarial Network for Robust Image Super-Resolution
    Kasem, Hossam M.
    Hung, Kwok-Wai
    Jiang, Jianmin
    IEEE ACCESS, 2019, 7 : 182993 - 183009
  • [7] SINGLE DEPTH IMAGE SUPER-RESOLUTION USING CONVOLUTIONAL NEURAL NETWORKS
    Chen, Baoliang
    Jung, Cheolkon
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1473 - 1477
  • [8] Single Face Image Super-Resolution Using Local Training Networks
    Ni, Peiqing
    Zhang, Dongping
    Hu, Kui
    Jing, Changxing
    Yang, Li
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1277 - 1281
  • [9] LADDER PYRAMID NETWORKS FOR SINGLE IMAGE SUPER-RESOLUTION
    Mo, Zitao
    He, Xiangyu
    Li, Gang
    Cheng, Jian
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 578 - 582
  • [10] Steformer: Efficient Stereo Image Super-Resolution With Transformer
    Lin, Jianxin
    Yin, Lianying
    Wang, Yijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8396 - 8407