Non-uniqueness of weak solutions for the fractal Burgers equation

被引:36
作者
Alibaud, Nathael [1 ]
Andreianov, Boris [1 ]
机构
[1] CNRS, UMR 6623, Lab Math Besancon, F-25030 Besancon, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2010年 / 27卷 / 04期
关键词
Fractional Laplacian; Non-local diffusion; Conservation law; Levy-Khintchine's formula; Entropy solution; Admissibility of solutions; Oleinik's condition; Non-uniqueness of weak solutions; GLOBAL WELL-POSEDNESS; ASYMPTOTICS;
D O I
10.1016/j.anihpc.2010.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the L-infinity-framework. In the present paper, we further motivate the introduction of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one, uniqueness of a weak solution may fail. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:997 / 1016
页数:20
相关论文
共 29 条
[1]  
ALIBAUD N, SIAM J MATH IN PRESS
[2]   Occurrence and non-appearance of shocks in fractal Burgers equations [J].
Alibaud, Nathael ;
Droniou, Jerome .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (03) :479-499
[3]   Entropy formulation for fractal conservation laws [J].
Alibaud, Nathael .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (01) :145-175
[4]  
Alibaud N, 2009, T AM MATH SOC, V361, P2527
[5]  
Biler P, 1999, STUD MATH, V135, P231
[6]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[7]   Asymptotics for conservation laws involving Levy diffusion generators [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
STUDIA MATHEMATICA, 2001, 148 (02) :171-192
[8]   Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :613-637
[9]   FELLER SEMIGROUPS ON A VARIETY WITH COMPACT EDGE AND SECOND ORDER INTEGRO-DIFFERENTIAL LIMIT PROBLEMS GIVING RISE TO A MAXIMUM PRINCIPLE [J].
BONY, JM ;
COURREGE, P ;
PRIOURET, P .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (02) :369-&
[10]  
CHAN CH, 2009, EVENTUAL REGUL UNPUB