Low dephasing and robust micromagnet designs for silicon spin qubits

被引:17
作者
Dumoulin Stuyck, N., I [1 ,2 ]
Mohiyaddin, F. A. [2 ]
Li, R. [2 ]
Heyns, M. [1 ,2 ]
Govoreanu, B. [2 ]
Radu, I. P. [2 ]
机构
[1] Katholieke Univ Leuven, Dept Mat Engn MTM, B-3001 Leuven, Belgium
[2] IMEC, B-3001 Leuven, Belgium
关键词
QUANTUM; ELECTRON; NOISE;
D O I
10.1063/5.0059939
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using micromagnets to enable electron spin manipulation in silicon qubits has emerged as a very popular method, enabling single-qubit gate fidelities larger than 99.9%. However, these micromagnets also apply stray magnetic field gradients onto the qubits, making the spin states susceptible to electric field noise and limiting their coherence times. We describe here a magnet design that minimizes qubit dephasing, while allowing for fast qubit control and addressability. Specifically, we design and optimize magnet dimensions and positions relative to the quantum dots, minimizing dephasing from magnetic field gradients. The micromagnet-induced dephasing rates with this design are up to three orders of magnitude lower than state-of-the-art implementations, allowing for long coherence times. This design is robust against fabrication errors and can be combined with a wide variety of silicon qubit device geometries, thereby allowing exploration of coherence limiting factors and novel upscaling approaches. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Electric-field control and noise protection of the flopping-mode spin qubit [J].
Benito, M. ;
Croot, X. ;
Adelsberger, C. ;
Putz, S. ;
Mi, X. ;
Petta, J. R. ;
Burkard, Guido .
PHYSICAL REVIEW B, 2019, 100 (12)
[2]   Programable two-qubit gates in capacitively coupled flopping-mode spin qubits [J].
Cayao, Jorge ;
Benito, Monica ;
Burkard, Guido .
PHYSICAL REVIEW B, 2020, 101 (19)
[3]  
Donahue M. J., 1999, NISTIR 6376, DOI 10.6028/NIST.IR.6376
[4]   Spins in few-electron quantum dots [J].
Hanson, R. ;
Kouwenhoven, L. P. ;
Petta, J. R. ;
Tarucha, S. ;
Vandersypen, L. M. K. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (04) :1217-1265
[5]   Fidelity benchmarks for two-qubit gates in silicon [J].
Huang, W. ;
Yang, C. H. ;
Chan, K. W. ;
Tanttu, T. ;
Hensen, B. ;
Leon, R. C. C. ;
Fogarty, M. A. ;
Hwang, J. C. C. ;
Hudson, F. E. ;
Itoh, K. M. ;
Morello, A. ;
Laucht, A. ;
Dzurak, A. S. .
NATURE, 2019, 569 (7757) :532-+
[6]  
Kawakami E, 2014, NAT NANOTECHNOL, V9, P666, DOI [10.1038/nnano.2014.153, 10.1038/NNANO.2014.153]
[7]   A crossbar network for silicon quantum dot qubits [J].
Li, Ruoyu ;
Petit, Luca ;
Franke, David P. ;
Dehollain, Juan Pablo ;
Helsen, Jonas ;
Steudtner, Mark ;
Thomas, Nicole K. ;
Yoscovits, Zachary R. ;
Singh, Kanwal J. ;
Wehner, Stephanie ;
Vandersypen, Lieven M. K. ;
Clarke, James S. ;
Veldhorst, Menno .
SCIENCE ADVANCES, 2018, 4 (07)
[8]   Quantum computation with quantum dots [J].
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 1998, 57 (01) :120-126
[9]   Strong coupling of a single electron in silicon to a microwave photon [J].
Mi, X. ;
Cady, J. V. ;
Zajac, D. M. ;
Deelman, P. W. ;
Petta, J. R. .
SCIENCE, 2017, 355 (6321) :156-+
[10]   Multiphysics Simulation & Design of Silicon Quantum Dot Qubit Devices [J].
Mohiyaddin, F. A. ;
Simion, G. ;
Stuyck, N. I. Dumoulin ;
Li, R. ;
Ciubotaru, F. ;
Eneman, G. ;
Bufler, F. M. ;
Kubicek, S. ;
Jussot, J. ;
Chan, B. T. ;
Ivanov, Ts. ;
Spessot, A. ;
Matagne, P. ;
Lee, J. ;
Govoreanu, B. ;
Radu, I. P. .
2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,