A singular quasilinear anisotropic elliptic boundary value problem. II

被引:22
作者
Choi, YS [1 ]
McKenna, PJ [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06268 USA
关键词
Harnack inequality; singular; subsolution; supersolution;
D O I
10.1090/S0002-9947-98-02276-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of R-N with N greater than or equal to 2. We consider the equations [GRAPHICS] with a(1) greater than or equal to a(2) greater than or equal to .... greater than or equal to a(N) greater than or equal to 0 and a(1) > a(N). We show that if Omega is a convex bounded region in R-N, there exists at least one classical solution to this boundary value problem. If the region is not convex, we show the existence of a weak solution. Partial results for the existence of classical solutions for non-convex domains in R-2 are also given.
引用
收藏
页码:2925 / 2937
页数:13
相关论文
共 10 条
[1]  
[Anonymous], 1973, LECT NOTES MATH
[2]   An elliptic problem arising from the unsteady transonic small disturbance equation [J].
Canic, S ;
Keyfitz, BL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :548-574
[3]   ON A SINGULAR QUASI-LINEAR ANISOTROPIC ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
CHOI, YS ;
LAZER, AC ;
MCKENNA, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (07) :2633-2641
[4]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029
[5]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[6]   ON A SINGULAR NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
LAZER, AC ;
MCKENNA, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (03) :721-730
[7]  
Nachman A., 1986, SIAM J APPL MATH, V28, P271
[8]  
REICHEL W, 1997, GEN INEQUALITIES, V7, P375
[9]   EXISTENCE THEOREMS FOR A CLASS OF NONLINEAR INTEGRAL-EQUATIONS [J].
STUART, CA .
MATHEMATISCHE ZEITSCHRIFT, 1974, 137 (01) :49-66
[10]  
Taliaferro S. D., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P897, DOI 10.1016/0362-546X(79)90057-9