Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial differential equations
被引:14
作者:
Liu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R China
Liu, Wei
[1
]
Roeckner, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Bielefeld Univ, Fac Math, D-33615 Bielefeld, Germany
Chinese Acad Sci, Acad Math & Syst, Beijing 100190, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R China
Roeckner, Michael
[2
,3
]
da Silva, Jose Luis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Madeira, CIMA, P-9020105 Funchal, PortugalJiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R China
da Silva, Jose Luis
[4
]
机构:
[1] Jiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R China
[2] Bielefeld Univ, Fac Math, D-33615 Bielefeld, Germany
[3] Chinese Acad Sci, Acad Math & Syst, Beijing 100190, Peoples R China
[4] Univ Madeira, CIMA, P-9020105 Funchal, Portugal
In this paper strong dissipativity of generalized time-fractional derivatives on Gelfand triples of properly in time weighted L-p-path spaces is proved. In particular, as special cases the classical Caputo derivative and other fractional derivatives appearing in applications are included. As a consequence one obtains the existence and uniqueness of solutions to evolution equations on Gelfand triples with generalized time-fractional derivatives. These equations are of type d/dt (k * u)(t) + A(t, u(t)) = f(t), 0 < t < T, with (in general nonlinear) operators A(t, .) satisfying general weak monotonicity conditions. Here kis a non-increasing locally Lebesgue-integrable nonnegative function on [0, infinity) with lim(s ->infinity) k(s) = 0. Analogous results for the case, where f is replaced by a time-fractional additive noise, are obtained as well. Applications include generalized time-fractional quasi-linear (stochastic) partial differential equations. In particular, time-fractional (stochastic) porous medium and fast diffusion equations with ordinary or fractional Laplace operators and the time-fractional (stochastic) p-Laplace equation are covered. (C) 2021 Elsevier Inc. All rights reserved.
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Xu, Jiaohui
Caraballo, Tomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Seville, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, SpainXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
机构:
Univ Puerto Rico, Fac Nat Sci, Dept Math, Rio Piedras Campus,17 Univ STE 1701, San Juan, PR 00925 USAUniv Puerto Rico, Fac Nat Sci, Dept Math, Rio Piedras Campus,17 Univ STE 1701, San Juan, PR 00925 USA
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Xu, Jiaohui
Caraballo, Tomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Seville, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, SpainXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
机构:
Univ Puerto Rico, Fac Nat Sci, Dept Math, Rio Piedras Campus,17 Univ STE 1701, San Juan, PR 00925 USAUniv Puerto Rico, Fac Nat Sci, Dept Math, Rio Piedras Campus,17 Univ STE 1701, San Juan, PR 00925 USA