Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial differential equations
被引:14
|
作者:
Liu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R China
Liu, Wei
[1
]
Roeckner, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Bielefeld Univ, Fac Math, D-33615 Bielefeld, Germany
Chinese Acad Sci, Acad Math & Syst, Beijing 100190, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R China
Roeckner, Michael
[2
,3
]
da Silva, Jose Luis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Madeira, CIMA, P-9020105 Funchal, PortugalJiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R China
da Silva, Jose Luis
[4
]
机构:
[1] Jiangsu Normal Univ, Sch Math & Stat, RIMS, Xuzhou 221116, Jiangsu, Peoples R China
[2] Bielefeld Univ, Fac Math, D-33615 Bielefeld, Germany
[3] Chinese Acad Sci, Acad Math & Syst, Beijing 100190, Peoples R China
[4] Univ Madeira, CIMA, P-9020105 Funchal, Portugal
In this paper strong dissipativity of generalized time-fractional derivatives on Gelfand triples of properly in time weighted L-p-path spaces is proved. In particular, as special cases the classical Caputo derivative and other fractional derivatives appearing in applications are included. As a consequence one obtains the existence and uniqueness of solutions to evolution equations on Gelfand triples with generalized time-fractional derivatives. These equations are of type d/dt (k * u)(t) + A(t, u(t)) = f(t), 0 < t < T, with (in general nonlinear) operators A(t, .) satisfying general weak monotonicity conditions. Here kis a non-increasing locally Lebesgue-integrable nonnegative function on [0, infinity) with lim(s ->infinity) k(s) = 0. Analogous results for the case, where f is replaced by a time-fractional additive noise, are obtained as well. Applications include generalized time-fractional quasi-linear (stochastic) partial differential equations. In particular, time-fractional (stochastic) porous medium and fast diffusion equations with ordinary or fractional Laplace operators and the time-fractional (stochastic) p-Laplace equation are covered. (C) 2021 Elsevier Inc. All rights reserved.
机构:
Jiangsu Normal Univ, Sch Math Sci, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math Sci, Xuzhou 221116, Jiangsu, Peoples R China
Liu, Wei
Roeckner, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bielefeld, Fak Math, D-33501 Bielefeld, GermanyJiangsu Normal Univ, Sch Math Sci, Xuzhou 221116, Jiangsu, Peoples R China
Roeckner, Michael
da Silva, Jose Luis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Madeira, CIMA, Campus Penteada, P-9020105 Funchal, PortugalJiangsu Normal Univ, Sch Math Sci, Xuzhou 221116, Jiangsu, Peoples R China
机构:
Univ Lisbon, INESC ID, Inst Super Tecn, Lisbon, PortugalUniv Lisbon, INESC ID, Inst Super Tecn, Lisbon, Portugal
Guidotti, Nicolas L.
Acebron, Juan A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, INESC ID, Inst Super Tecn, Lisbon, Portugal
Carlos III Univ Madrid, Dept Math, Madrid, SpainUniv Lisbon, INESC ID, Inst Super Tecn, Lisbon, Portugal
Acebron, Juan A.
Monteiro, Jose
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, INESC ID, Inst Super Tecn, Lisbon, PortugalUniv Lisbon, INESC ID, Inst Super Tecn, Lisbon, Portugal
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USAUniv Washington, Dept Math, Seattle, WA 98195 USA
Chen, Zhen-Qing
Kim, Kyeong-Hun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Math, Seoul 136701, South KoreaUniv Washington, Dept Math, Seattle, WA 98195 USA
Kim, Kyeong-Hun
Kim, Panki
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaUniv Washington, Dept Math, Seattle, WA 98195 USA
机构:
North Caucasus Fed Univ, North Caucasus Ctr Math Res, Pushkin str 1, Stavropol 355017, RussiaNorth Caucasus Fed Univ, North Caucasus Ctr Math Res, Pushkin str 1, Stavropol 355017, Russia
Alikhanov, Anatoly A.
Huang, Chengming
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R ChinaNorth Caucasus Fed Univ, North Caucasus Ctr Math Res, Pushkin str 1, Stavropol 355017, Russia