Inverse coefficient problems for variational inequalities:: Optimality conditions and numerical realization

被引:37
作者
Hintermüller, M [1 ]
机构
[1] Karl Franzens Univ Graz, Dept Math, A-8010 Graz, Austria
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2001年 / 35卷 / 01期
关键词
bilevel problem; complementarity function; inverse problem; optimal control; variational inequality;
D O I
10.1051/m2an:2001109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality conditions as a set of equalities. Finally, numerical results obtained from a least squares type algorithm emphasize the feasibility of our approach.
引用
收藏
页码:129 / 152
页数:24
相关论文
共 22 条
[1]  
Barbu V., 1984, OPTIMAL CONTROL VARI, DOI DOI 10.1007/BF01442167
[2]  
BAYADA B, 1994, 173 INSA
[3]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[4]   Primal-dual strategy for constrained optimal control problems [J].
Bergounioux, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1176-1194
[5]   Optimal control of obstacle problems: Existence of Lagrange multipliers [J].
Bergounioux, M ;
Mignot, F .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 :45-70
[6]   Optimal control of problems governed by abstract elliptic variational inequalities with state constraints [J].
Bergounioux, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (01) :273-289
[7]  
Bergounioux M., 1998, J Convex Anal, V5, P329
[8]  
BERMUDEZ A, 1987, LECT NOTES CONTROL I
[9]  
CAPRIZ G, 1983, RES NOTES MATH, V79
[10]  
CIMATTI G, 1977, APPL MATH OPT, V3, P227