Riemann-Hilbert correspondence for holonomic D-modules

被引:33
|
作者
D'Agnolo, Andrea [1 ]
Kashiwara, Masaki [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
[2] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2016年 / 123卷 / 01期
关键词
FLAT MEROMORPHIC CONNECTIONS; GOOD FORMAL STRUCTURES; THEOREM;
D O I
10.1007/s10240-015-0076-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Riemann-Hilbert correspondence establishes an equivalence between the triangulated category of regular holonomic -modules and that of constructible sheaves. In this paper, we prove a Riemann-Hilbert correspondence for holonomic -modules which are not necessarily regular. The construction of our target category is based on the theory of ind-sheaves by Kashiwara-Schapira and influenced by Tamarkin's work. Among the main ingredients of our proof is the description of the structure of flat meromorphic connections due to Mochizuki and Kedlaya.
引用
收藏
页码:69 / 197
页数:129
相关论文
共 16 条