Leveraging microwave polarization information for the calibration of a land data assimilation system

被引:2
|
作者
Holmes, Thomas R. H. [1 ,2 ]
Crow, Wade T. [1 ]
De Jeu, Richard A. M. [3 ]
机构
[1] USDA ARS Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[2] Sci Syst & Applicat, Lanham, MD USA
[3] Vrije Univ Amsterdam, Dept Earth Sci, Amsterdam, Netherlands
关键词
calibration; land surface model; passive microwave; RADIATIVE-TRANSFER MODEL; SOIL-MOISTURE; EMISSION; PARAMETERIZATION; ERROR;
D O I
10.1002/2014GL061991
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to land surface model output with low-frequency (<10GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorly posed because various parameter combinations may yield indistinguishable (least squares error) results. This is theoretically important for a land data assimilation system since alternative parameter combinations have different impacts on the sensitivity of TB to soil moisture and misattribution of systematic error may therefore disrupt data assimilation system performance. Via synthetic experiments we demonstrate that using TB polarization difference to parameterize vegetation opacity can improve the stability of calibrated soil moisture/TB sensitivities relative to the more typical approach of utilizing ancillary information to estimate vegetation opacity. The proposed approach fully follows from the radiative transfer model, implemented according to commonly adopted assumptions, and reduces by one the number of calibration parameters.
引用
收藏
页码:8879 / 8886
页数:8
相关论文
共 50 条
  • [41] The Optimality of Potential Rescaling Approaches in Land Data Assimilation
    Yilmaz, M. Tugrul
    Crow, Wade T.
    JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (02) : 650 - 660
  • [42] Development of a Land Data Assimilation System for Assimilating AMSR-E Brightness Temperature Observations
    Li, Xin
    Koike, Toshio
    Graf, Tobias
    Yang, Kun
    Hirai, Masayuki
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2927 - +
  • [43] ESTIMATING ENERGY, WATER AND CARBON FLUX OVER AFRICA WITH USING A LAND DATA ASSIMILATION SYSTEM
    Lu, Hui
    Koike, Toshio
    Rasmy, Mohamed
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4879 - 4882
  • [44] Evaluation of an Adaptive Soil Moisture Bias Correction Approach in the ECMWF Land Data Assimilation System
    Fairbairn, David
    de Rosnay, Patricia
    Weston, Peter
    REMOTE SENSING, 2024, 16 (03)
  • [45] Hydrologic remote sensing and land surface data assimilation
    Moradkhani, Hamid
    SENSORS, 2008, 8 (05) : 2986 - 3004
  • [46] Quantifying Precipitation Uncertainty for Land Data Assimilation Applications
    Alemohammad, Seyed Hamed
    McLaughlin, Dennis B.
    Entekhabi, Dara
    MONTHLY WEATHER REVIEW, 2015, 143 (08) : 3276 - 3299
  • [47] Quick estimation of parameters for the land surface data assimilation system and its influence based on the extended Kalman filter and automatic differentiation
    Tian, Jiaxin
    Lu, Hui
    Yang, Kun
    Qin, Jun
    Zhao, Long
    Zhou, Jianhong
    Jiang, Yaozhi
    Ma, Xiaogang
    SCIENCE CHINA-EARTH SCIENCES, 2023, 66 (11) : 2546 - 2562
  • [48] An autonomous navigation system integrated with air data and bionic polarization information
    Guo, Xiaoyu
    Yang, Jian
    Du, Tao
    Liu, Wanquan
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (13) : 3679 - 3687
  • [49] A calibration and data assimilation method using the Bayesian MARS emulator
    Stripling, H. F.
    McClarren, R. G.
    Kuranz, C. C.
    Grosskopf, M. J.
    Rutter, E.
    Torralva, B. R.
    ANNALS OF NUCLEAR ENERGY, 2013, 52 : 103 - 112
  • [50] Consistent assimilation of multiple data streams in a carbon cycle data assimilation system
    MacBean, Natasha
    Peylin, Philippe
    Chevallier, Frederic
    Scholze, Marko
    Schuermann, Gregor
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (10) : 3569 - 3588