Leveraging microwave polarization information for the calibration of a land data assimilation system

被引:2
|
作者
Holmes, Thomas R. H. [1 ,2 ]
Crow, Wade T. [1 ]
De Jeu, Richard A. M. [3 ]
机构
[1] USDA ARS Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[2] Sci Syst & Applicat, Lanham, MD USA
[3] Vrije Univ Amsterdam, Dept Earth Sci, Amsterdam, Netherlands
关键词
calibration; land surface model; passive microwave; RADIATIVE-TRANSFER MODEL; SOIL-MOISTURE; EMISSION; PARAMETERIZATION; ERROR;
D O I
10.1002/2014GL061991
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to land surface model output with low-frequency (<10GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorly posed because various parameter combinations may yield indistinguishable (least squares error) results. This is theoretically important for a land data assimilation system since alternative parameter combinations have different impacts on the sensitivity of TB to soil moisture and misattribution of systematic error may therefore disrupt data assimilation system performance. Via synthetic experiments we demonstrate that using TB polarization difference to parameterize vegetation opacity can improve the stability of calibrated soil moisture/TB sensitivities relative to the more typical approach of utilizing ancillary information to estimate vegetation opacity. The proposed approach fully follows from the radiative transfer model, implemented according to commonly adopted assumptions, and reduces by one the number of calibration parameters.
引用
收藏
页码:8879 / 8886
页数:8
相关论文
共 50 条
  • [31] Evaluation of a Data Assimilation System for Land Surface Models Using CLM4.5
    Fox, Andrew M.
    Hoar, Timothy J.
    Anderson, Jeffrey L.
    Arellano, Avelino F.
    Smith, William K.
    Litvak, Marcy E.
    MacBean, Natasha
    Schimel, David S.
    Moore, David J. P.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2018, 10 (10) : 2471 - 2494
  • [32] Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates
    Al-Yaari, A.
    Wigneron, J. -P.
    Ducharne, A.
    Kerr, Y.
    de Rosnay, P.
    de Jeu, R.
    Govind, A.
    Al Bitar, A.
    Albergel, C.
    Munoz-Sabater, J.
    Richaume, P.
    Mialon, A.
    REMOTE SENSING OF ENVIRONMENT, 2014, 149 : 181 - 195
  • [33] Improving Spatial Patterns Prior to Land Surface Data Assimilation via Model Calibration Using SMAP Surface Soil Moisture Data
    Zhou, Jianhong
    Wu, Zhiyong
    Crow, Wade T.
    Dong, Jianzhi
    He, Hai
    WATER RESOURCES RESEARCH, 2020, 56 (10)
  • [34] Development of a Satellite Land Data Assimilation System Coupled With a Mesoscale Model in the Tibetan Plateau
    Rasmy, Mohamed
    Koike, Toshio
    Boussetta, Souhail
    Lu, Hui
    Li, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (08): : 2847 - 2862
  • [35] An intercomparison of soil moisture fields in the North American land data assimilation system (NLDAS)
    Schaake, JC
    Duan, QY
    Koren, V
    Mitchell, KE
    Houser, PR
    Wood, EF
    Robock, A
    Lettenmaier, DP
    Lohmann, D
    Cosgrove, B
    Sheffield, J
    Luo, LF
    Higgins, RW
    Pinker, RT
    Tarpley, JD
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D1)
  • [36] A land data assimilation system using the MODIS-derived land data and its application to numerical weather prediction in East Asia
    Lim, Yoon-Jin
    Byun, Kun-Young
    Lee, Tae-Young
    Kwon, Hyojung
    Hong, Jinkyu
    Kim, Joon
    ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2012, 48 (01) : 83 - 95
  • [37] Data Descriptor: A land data assimilation system for sub-Saharan Africa food and water security applications
    McNally, Amy
    Arsenault, Kristi
    Kumar, Sujay
    Shukla, Shraddhanand
    Peterson, Pete
    Wang, Shugong
    Funk, Chris
    Peters-Lidard, Christa D.
    Verdin, James P.
    SCIENTIFIC DATA, 2017, 4
  • [38] Nonparametric Data Assimilation Scheme for Land Hydrological Applications
    Khaki, M.
    Hamilton, F.
    Forootan, E.
    Hoteit, I.
    Awange, J.
    Kuhn, M.
    WATER RESOURCES RESEARCH, 2018, 54 (07) : 4946 - 4964
  • [39] IMPROVING LAND SURFACE ENERGY AND WATER FLUXES SIMULATION OVER THE TIBETAN PLATEAU WITH USING A LAND DATA ASSIMILATION SYSTEM
    Lu, Hui
    Koike, Toshio
    Yang, Kun
    Li, Xin
    Tsutsui, Hiroyuki
    Tamagawa, Katsunori
    Xu, Xiangde
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1207 - 1210
  • [40] The Land Variational Ensemble Data Assimilation Framework: LAVENDAR v1.0.0
    Pinnington, Ewan
    Quaife, Tristan
    Lawless, Amos
    Williams, Karina
    Arkebauer, Tim
    Scoby, Dave
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (01) : 55 - 69