Finite-dimensional representations of quantum affine algebras

被引:108
作者
Akasaka, T [1 ]
Kashiwara, M [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 60601, Japan
关键词
D O I
10.2977/prims/1195145020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a conjecture on the irreducibility of the tensor products of fundamental representations of quantized affine algebras. This conjecture implies in particular that the irreducibility of the tensor products of fundamental representations is completely described by the poles of R-matrices. The conjecture is proved in the cases of type A(n)((1)) and C-n((1)).
引用
收藏
页码:839 / 867
页数:29
相关论文
共 18 条
[1]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[2]  
CHARI V, QALG9611002
[3]  
Chari V., 1995, Representations of groups, V16, P59
[4]  
Chari V., 1994, GUIDE QUANTUM GROUPS
[5]   CALCULATION OF EXCITATION-SPECTRA OF THE SPIN MODEL RELATED WITH THE VECTOR REPRESENTATION OF THE QUANTIZED AFFINE ALGEBRA OF TYPE A(N)((1)) [J].
DATE, E ;
OKADO, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (03) :399-417
[6]  
Drinfeld V. G., 1988, Soviet Math. Dokl., V36, P212
[7]  
DRINFELD VG, P ICM 86, V1, P798
[8]   QUANTUM AFFINE ALGEBRAS AND HOLONOMIC DIFFERENCE-EQUATIONS [J].
FRENKEL, IB ;
RESHETIKHIN, NY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) :1-60
[9]   Exact S-matrices for d(n+1)((2)) affine Toda solitons and their bound states [J].
Gandenberger, GM ;
MacKay, NJ .
NUCLEAR PHYSICS B, 1995, 457 (1-2) :240-272
[10]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69