Quantification of the effect of soil erosion factors on soil nutrients at a small watershed in the Loess Plateau, Northwest China

被引:15
|
作者
Wang, Ziguan [1 ,2 ]
Wang, Guangcai [3 ,4 ]
Zhang, Yongguang [5 ]
Wang, Ruixue [2 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Land Resource Engn, Kunming 650093, Yunnan, Peoples R China
[3] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Beijing 100083, Peoples R China
[4] China Univ Geosci, MOE Key Lab Groundwater Circulat & Environm Evolu, Beijing 100083, Peoples R China
[5] Capital Normal Univ, Informat Engn Coll, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient boosting decision tree; Quantitative assessment; Soil erosion factors; Soil nutrients; ECO-GEOLOGICAL ENVIRONMENT; SPATIAL-DISTRIBUTION; ENRICHMENT RATIO; RAINDROP IMPACT; ORGANIC-CARBON; TOTAL NITROGEN; RAINFALL; SLOPE; REGION; ERODIBILITY;
D O I
10.1007/s11368-019-02458-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Purpose This research aimed to quantitatively assess the effect of soil erosion factors on soil nutrients under similar rainfall conditions at a small watershed in the Loess Plateau, China, with emphasis on quantification of each factor's contribution to soil nutrients. Materials and methods Forty-five soil samples were collected and the soil texture and nutrients were analyzed. The integrated fertility index (IFI) was quantified with laboratory-measured available phosphorus, available potassium, total nitrogen, and soil organic matter based on principal component analysis and the soil erosion factors were computed. The feature importance of soil erosion factors that affect soil nutrients was estimated based on the gradient-boosting decision tree (GBDT) method. Results and discussion The GBDT optimized model revealed that the feature importance of soil erosion factors soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and mechanical erosion control (P) was 0.41, 0.11, 0.03, 0.39, and 0.06, respectively. The K and C factors occupied 80% of the importance and were the two predominant soil erosion factors affecting the soil comprehensive nutrients. The Pearson correlation coefficient between K, L, S, C, or P, and IFI was - 0.387, - 0.23, - 0.25, - 0.479, and - 0.532, respectively. The different order of factors between the Pearson correlation and feature importance may indicate that linear relation cannot be used to indicate the significance of each factor. Conclusions The soil erodibility and the vegetation cover could basically determine the quality of soil nutrients in the small watershed under similar rainfall conditions. The soil property itself and associated effects on the amount and rate of runoff under a certain rainfall erosivity had a dominant impact on the soil nutrients. Factor C greatly contributed to runoff resistance and protection of nutrients from erosion. The L, S, and P factors had weak effects on the IFI because of the generally low rainfall intensity, short rainfall duration, and other factors that may counteract the effects in the area.
引用
收藏
页码:745 / 755
页数:11
相关论文
共 50 条
  • [1] Quantification of the effect of soil erosion factors on soil nutrients at a small watershed in the Loess Plateau, Northwest China
    Ziguan Wang
    Guangcai Wang
    Yongguang Zhang
    Ruixue Wang
    Journal of Soils and Sediments, 2020, 20 : 745 - 755
  • [2] Response of soil nutrients to terracing and environmental factors in the Loess Plateau of China
    Chen, Die
    Wei, Wei
    Chen, Liding
    Ma, Bojun
    Li, Hao
    GEOGRAPHY AND SUSTAINABILITY, 2024, 5 (02) : 230 - 240
  • [3] Analysis of soil erosion characteristics in small watershed of the loess tableland Plateau of China
    Wang, Jing
    Lu, Pingda
    Valente, Donatella
    Petrosillo, Irene
    Babu, Subhash
    Xu, Shiying
    Li, Changcheng
    Huang, Donglin
    Liu, Mengyun
    ECOLOGICAL INDICATORS, 2022, 137
  • [4] Effects of soil erosion and land use on spatial distribution of soil total phosphorus in a small watershed on the Loess Plateau, China
    Cheng, Yuting
    Li, Peng
    Xu, Guoce
    Li, Zhanbin
    Gao, Haidong
    Zhao, Binhua
    Wang, Tian
    Wang, Feichao
    Cheng, Shengdong
    SOIL & TILLAGE RESEARCH, 2018, 184 : 142 - 152
  • [5] Spatial heterogeneity of soil organic carbon and soil nutrients and their controlling factors in a small watershed in Northeast China
    Wang Lixin
    Chen Zhuoxin
    Guo Mingming
    Zhang Shaoliang
    Zhang Xingyi
    Zhou Pengchong
    Xu Jinzhong
    Liu, Xin
    Qi Jiarui
    Wan Zhaokai
    SOIL USE AND MANAGEMENT, 2024, 40 (01)
  • [6] Effect of Land Use on Soil Erosion and Nutrients in Dianchi Lake Watershed, China
    Niu Xiao-Yin
    Wang Yan-Hua
    Yang Hao
    Zheng Jia-Wen
    Zou Jun
    Xu Mei-Na
    Wu Shan-Shan
    Xie Biao
    PEDOSPHERE, 2015, 25 (01) : 103 - 111
  • [7] Effect of land use on soil nutrients in the loess hilly area of the Loess Plateau, China
    Gong, J.
    Chen, L.
    Fu, B.
    Huang, Y.
    Huang, Z.
    Peng, H.
    LAND DEGRADATION & DEVELOPMENT, 2006, 17 (05) : 453 - 465
  • [8] Influence of land management on soil nutrients and microbial biomass in the central Loess Plateau, northwest China
    Jia, GM
    Cao, J
    Wang, G
    LAND DEGRADATION & DEVELOPMENT, 2005, 16 (05) : 455 - 462
  • [9] Soil erosion and sediment interception by check dams in a watershed for an extreme rainstorm on the Loess Plateau, China
    Bai, Leichao
    Wang, Nan
    Jiao, Juying
    Chen, Yixian
    Tang, Bingzhe
    Wang, Haolin
    Chen, Yulan
    Yan, Xiqin
    Wang, Zhijie
    INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2020, 35 (04) : 408 - 416
  • [10] Evaluation of the EUROSEM on soil erosion simulation for loess plateau, northern China
    Su, Chang
    Wang, Yu
    Fu, Xingtao
    Wang, Zhiyuan
    EARTH SURFACE PROCESSES AND LANDFORMS, 2024, 49 (11) : 3510 - 3523