Distribution Augmentation for Generative Modeling

被引:0
|
作者
Jun, Heewoo [1 ]
Child, Rewon [1 ]
Chen, Mark [1 ]
Schulman, John [1 ]
Ramesh, Aditya [1 ]
Radford, Alec [1 ]
Sutskever, Ilya [1 ]
机构
[1] OpenAI, San Francisco, CA 94110 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present distribution augmentation (DistAug), a simple and powerful method of regularizing generative models. Our approach applies augmentation functions to data and, importantly, conditions the generative model on the specific function used. Unlike typical data augmentation, DistAug allows usage of functions which modify the target density, enabling aggressive augmentations more commonly seen in supervised and self-supervised learning. We demonstrate this is a more effective regularizer than standard methods, and use it to train a 152M parameter autoregressive model on CIFAR-10 to 2.56 bits per dim (relative to the state-of-the-art 2.80). Samples from this model attain FID 12.75 and IS 8.40, outperforming the majority of GANs. We further demonstrate the technique is broadly applicable across model architectures and problem domains.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Lifelong generative modeling
    Ramapuram, Jason
    Gregorova, Magda
    Kalousis, Alexandros
    NEUROCOMPUTING, 2020, 404 : 381 - 400
  • [32] Generative modeling of genomes
    Tang, Lin
    NATURE METHODS, 2025, 22 (01) : 7 - 7
  • [33] Improve Learning from Crowds via Generative Augmentation
    Chu, Zhendong
    Wang, Hongning
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 167 - 175
  • [34] Generative adversarial networks with denoising penalty and sample augmentation
    Gan, Yan
    Liu, Kedi
    Ye, Mao
    Zhang, Yuxiao
    Qian, Yang
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (14): : 9995 - 10005
  • [35] Multimodal Person Verification With Generative Thermal Data Augmentation
    Abdrakhmanova, Madina
    Unaspekov, Timur
    Varol, Huseyin Atakan
    IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, 2024, 6 (01): : 43 - 53
  • [36] Data augmentation and generative machine learning on the cloud platform
    Piyush Vyas
    Kaushik Muthusamy Ragothaman
    Akhilesh Chauhan
    Bhaskar Rimal
    International Journal of Information Technology, 2024, 16 (8) : 4833 - 4843
  • [37] Generative Graph Augmentation for Minority Class in Fraud Detection
    Meng, Lin
    Mostafa, Hesham
    Nassar, Marcel
    Zhang, Xiaonan
    Zhang, Jiawei
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4200 - 4204
  • [38] Generative adversarial networks with denoising penalty and sample augmentation
    Yan Gan
    Kedi Liu
    Mao Ye
    Yuxiao Zhang
    Yang Qian
    Neural Computing and Applications, 2020, 32 : 9995 - 10005
  • [39] Generative Adversarial Networks in Medical Image augmentation: A review
    Chen, Yizhou
    Yang, Xu-Hua
    Wei, Zihan
    Heidari, Ali Asghar
    Zheng, Nenggan
    Li, Zhicheng
    Chen, Huiling
    Hu, Haigen
    Zhou, Qianwei
    Guan, Qiu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [40] Conditional Generative Data Augmentation for Clinical Audio Datasets
    Seibold, Matthias
    Hoch, Armando
    Farshad, Mazda
    Navab, Nassir
    Fuernstahl, Philipp
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 345 - 354