Distribution Augmentation for Generative Modeling

被引:0
|
作者
Jun, Heewoo [1 ]
Child, Rewon [1 ]
Chen, Mark [1 ]
Schulman, John [1 ]
Ramesh, Aditya [1 ]
Radford, Alec [1 ]
Sutskever, Ilya [1 ]
机构
[1] OpenAI, San Francisco, CA 94110 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present distribution augmentation (DistAug), a simple and powerful method of regularizing generative models. Our approach applies augmentation functions to data and, importantly, conditions the generative model on the specific function used. Unlike typical data augmentation, DistAug allows usage of functions which modify the target density, enabling aggressive augmentations more commonly seen in supervised and self-supervised learning. We demonstrate this is a more effective regularizer than standard methods, and use it to train a 152M parameter autoregressive model on CIFAR-10 to 2.56 bits per dim (relative to the state-of-the-art 2.80). Samples from this model attain FID 12.75 and IS 8.40, outperforming the majority of GANs. We further demonstrate the technique is broadly applicable across model architectures and problem domains.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Label Distribution Learning with Data Augmentation using Generative Adversarial Networks
    Rong, Bin-Yuan
    Zhang, Heng-Ru
    Li, Gui-Lin
    Min, Fan
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 21 - 30
  • [2] Generative Modeling by Estimating Gradients of the Data Distribution
    Song, Yang
    Ermon, Stefano
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [3] Generative modeling and augmentation of EEG signals using improved diffusion probabilistic models
    Torma, Szabolcs
    Szegletes, Luca
    JOURNAL OF NEURAL ENGINEERING, 2025, 22 (01)
  • [4] Defending Neural Backdoors via Generative Distribution Modeling
    Qiao, Ximing
    Yang, Yukun
    Li, Hai
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Impact of Generative Modeling for Fundus Image Augmentation With Improved and Degraded Quality in the Classification of Glaucoma
    Leonardo, Ricardo
    Goncalves, Joao
    Carreiro, Andre
    Simoes, Beatriz
    Oliveira, Tiago
    Soares, Filipe
    IEEE ACCESS, 2022, 10 : 111636 - 111649
  • [6] A comprehensive survey for generative data augmentation
    Chen, Yunhao
    Yan, Zihui
    Zhu, Yunjie
    NEUROCOMPUTING, 2024, 600
  • [7] Generative Data Augmentation for Commonsense Reasoning
    Yang, Yiben
    Malaviya, Chaitanya
    Fernandez, Jared
    Swayamdipta, Swabha
    Le Bras, Ronan
    Wang, Ji-Ping
    Bhagavatula, Chandra
    Choi, Yejin
    Downe, Doug
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1008 - 1025
  • [8] Enhancing Collaborative Filtering with Generative Augmentation
    Wang, Qinyong
    Yin, Hongzhi
    Wang, Hao
    Quoc Viet Hung Nguyen
    Huang, Zi
    Cui, Lizhen
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 548 - 556
  • [9] Toward Understanding Generative Data Augmentation
    Zheng, Chenyu
    Wu, Guoqiang
    Li, Chongxuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Generative Data Augmentation of Human Biomechanics
    Karason, Halldor
    Ritrovato, Pierluigi
    Maffulli, Nicola
    Tortorella, Francesco
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT I, 2024, 14365 : 482 - 493