Two-dimensional Legendre wavelet method for the numerical solutions of fuzzy integro-differential equations

被引:26
作者
Sahu, Prakash Kumar [1 ]
Ray, Santanu Saha [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela 769008, Odisha, India
关键词
Legendre wavelets; legendre wavelet method; integro-differential equation; fuzzy number; fuzzy calculus; FREDHOLM INTEGRAL-EQUATIONS; 2ND KIND; EXISTENCE;
D O I
10.3233/IFS-141412
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, two dimensional Legendre wavelet method has been applied to solve the fuzzy integro-differential equations. The properties of Legendre wavelets are first presented. In fuzzy case, we have developed two dimensional Legendre wavelets to approximate the fuzzy integro-differential equations. The properties of Legendre wavelets are used to reduce the system of integral equations to a system of algebraic equations which can be solved by any usual numerical method. Illustrative examples have been discussed to demonstrate the validity and applicability of the present method.
引用
收藏
页码:1271 / 1279
页数:9
相关论文
共 21 条
[1]   Numerical method for solving linear Fredholm fuzzy integral equations of the second kind [J].
Abbasbandy, S. ;
Babolian, E. ;
Alavi, M. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :138-146
[2]  
Abbasbandy S., 2012, Journal of Fuzzy Set Valued Analysis, V2012, DOI [10.5899/2012/jfsva-00066, DOI 10.5899/2012/JFSVA-00066]
[3]   Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations [J].
Alikhani, Robab ;
Bahrami, Fariba ;
Jabbari, Adel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1810-1821
[4]   Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method [J].
Babolian, E ;
Goghary, HS ;
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) :733-744
[5]   Two-dimensional Legendre wavelets method for the mixed Volterra-Fredholm integral equations [J].
Banifatemi, E. ;
Razzaghi, M. ;
Yousefi, S. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (11) :1667-1675
[6]   FUZZY MAPPING AND CONTROL [J].
CHANG, SSL ;
ZADEH, LA .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1972, SMC2 (01) :30-&
[7]  
Das Manmohan, 2014, INT J SCI TECHNOLOGY, V3, P291
[8]  
Ezzati R., 2011, Aust. J. Basic Appl. Sci., V5, P2072
[9]   Numerical solutions of fuzzy differential and integral equations [J].
Friedman, M ;
Ma, M ;
Kandel, A .
FUZZY SETS AND SYSTEMS, 1999, 106 (01) :35-48
[10]  
Jafarian A., 2012, ACTA U MATTHIAE BELI, V20, P21