THE WIGNER-LOHE MODEL FOR QUANTUM SYNCHRONIZATION AND ITS EMERGENT DYNAMICS

被引:8
作者
Antonelli, Paolo [1 ]
Ha, Seung-Yeal [2 ,3 ,4 ]
Kim, Dohyun [2 ,3 ,4 ]
Marcati, Pierangelo [1 ]
机构
[1] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[4] Korea Inst Adv Study, Hoegiro 87, Seoul 130722, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum synchronization; emergent behavior; Wigner equation; quantum hydrodynamics; PHASE-LOCKED STATES; POISSON PROBLEM; KURAMOTO MODEL; SCHRODINGER; POPULATIONS; UNIQUENESS; EXISTENCE; BEHAVIOR; SYSTEM;
D O I
10.3934/nhm.2017018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the Wigner-Lohe model for quantum synchronization which can be derived from the Schrodinger-Lohe model using the Wigner formalism. For identical one-body potentials, we provide a priori sufficient framework leading the complete synchronization, in which L-2-distances between all wave functions tend to zero asymptotically.
引用
收藏
页码:403 / 416
页数:14
相关论文
共 50 条
[41]   EMERGENT FLOCKING DYNAMICS OF THE DISCRETE THERMODYNAMIC CUCKER-SMALE MODEL [J].
Ha, Seung-Yeal ;
Kim, Doheon ;
Li, Zhuchun .
QUARTERLY OF APPLIED MATHEMATICS, 2020, 78 (04) :589-615
[42]   Emergent Dynamics of an Orientation Flocking Model With Distance-Dependent Delay [J].
Qiao, Zhengyang ;
Liu, Yicheng ;
Wang, Xiao ;
Chen, Maoli .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (12) :12349-12364
[43]   Noise effect on the dynamics and synchronization of saline oscillator's model [J].
Kenfack, W. Fokou ;
Siewe, M. Siewe ;
Kofane, T. C. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 :37-49
[44]   Emergent dynamics of the time-discrete infinite Cucker-Smale model [J].
Ha, Seung-Yeal ;
Lee, Seungjun ;
Wang, Xinyu .
JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (07)
[45]   Localized Dynamics in the Floquet Quantum East Model [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
PHYSICAL REVIEW LETTERS, 2024, 132 (08)
[46]   Hidden Dynamics, Multistability and Synchronization of a Memristive Hindmarsh-Rose Model [J].
Qiao, Shuai ;
Gao, Chenghua .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (16)
[47]   Dynamics of the finite-dimensional Kuramoto model: Global and cluster synchronization [J].
Vladimir N. Belykh ;
Valentin S. Petrov ;
Grigory V. Osipov .
Regular and Chaotic Dynamics, 2015, 20 :37-48
[48]   Hamiltonian mean field model: Effect of network structure on synchronization dynamics [J].
Virkar, Yogesh S. ;
Restrepo, Juan G. ;
Meiss, James D. .
PHYSICAL REVIEW E, 2015, 92 (05)
[49]   EMERGENT DYNAMICS OF THE FRACTIONAL CUCKER-SMALE MODEL UNDER GENERAL NETWORK TOPOLOGIES [J].
Jung, Jinwook ;
Kuchling, Peter .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (08) :2831-2856
[50]   The effect of noise on the synchronization dynamics of the Kuramoto model on a large human connectome graph [J].
Odor, Geza ;
Kelling, Jeffrey ;
Deco, Gustavo .
NEUROCOMPUTING, 2021, 461 :696-704