THE WIGNER-LOHE MODEL FOR QUANTUM SYNCHRONIZATION AND ITS EMERGENT DYNAMICS

被引:8
作者
Antonelli, Paolo [1 ]
Ha, Seung-Yeal [2 ,3 ,4 ]
Kim, Dohyun [2 ,3 ,4 ]
Marcati, Pierangelo [1 ]
机构
[1] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[4] Korea Inst Adv Study, Hoegiro 87, Seoul 130722, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum synchronization; emergent behavior; Wigner equation; quantum hydrodynamics; PHASE-LOCKED STATES; POISSON PROBLEM; KURAMOTO MODEL; SCHRODINGER; POPULATIONS; UNIQUENESS; EXISTENCE; BEHAVIOR; SYSTEM;
D O I
10.3934/nhm.2017018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the Wigner-Lohe model for quantum synchronization which can be derived from the Schrodinger-Lohe model using the Wigner formalism. For identical one-body potentials, we provide a priori sufficient framework leading the complete synchronization, in which L-2-distances between all wave functions tend to zero asymptotically.
引用
收藏
页码:403 / 416
页数:14
相关论文
共 50 条
[31]   Uniform-in-Time Continuum Limit of the Winfree Model on an Infinite Cylinder and Emergent Dynamics [J].
Ha, Seung-Yeal ;
Kang, Myeongju ;
Moon, Bora .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (02) :1104-1134
[32]   Nonlinear dynamics and synchronization of saline oscillator's model [J].
Kenfack, W. Fokou ;
Siewe, M. Siewe ;
Kofane, T. C. .
CHAOS SOLITONS & FRACTALS, 2016, 82 :72-82
[33]   A Second-Order Particle Swarm Model on a Sphere and Emergent Dynamics [J].
Ha, Seung-Yeal ;
Kim, Dohyun .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (01) :80-116
[34]   Emergent Eigenstate Solution to Quantum Dynamics Far from Equilibrium [J].
Vidmar, Lev ;
Iyer, Deepak ;
Rigol, Marcos .
PHYSICAL REVIEW X, 2017, 7 (02)
[35]   Investigating the impact of qubit velocity on quantum synchronization dynamics [J].
Almani, Amir Hossein Houshmand ;
Nourmandipour, Alireza ;
Mortezapour, Ali .
QUANTUM INFORMATION PROCESSING, 2025, 24 (05)
[36]   A Branching Random Walk Method for Many-Body Wigner Quantum Dynamics [J].
Shao, Sihong ;
Xiong, Yunfeng .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (01) :21-71
[37]   EMERGENT BEHAVIORS IN THE FRACTIONAL KURAMOTO MODEL WITH GENERAL NETWORK TOPOLOGIES AND ITS HYBRIDIZATION [J].
Ha, Seung-Yeal ;
Jung, Jinwook ;
Kuchling, Peter .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (03) :1427-1452
[38]   Quantum corrections of the truncated Wigner approximation applied to an exciton transport model [J].
Ivanov, Anton ;
Breuer, Heinz-Peter .
PHYSICAL REVIEW E, 2017, 95 (04)
[39]   Emergent dynamics of the Kuramoto model with adaptive coupling on undirected networks [J].
Wang, Yu-Qing ;
Dong, Jiu-Gang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 441
[40]   A swarm model for obstacle avoidance and its emergent behavior analysis [J].
Li, Nafen ;
Wu, Yu ;
Wang, Xian .
Journal of Computational Information Systems, 2014, 10 (04) :1449-1463