Chaos control and synchronization, with input saturation, via recurrent neural networks

被引:32
作者
Sanchez, EN [1 ]
Ricalde, LJ [1 ]
机构
[1] Univ Guadalajara, CINVESTAV, Guadalajara 45091, Jalisco, Mexico
关键词
recurrent neural networks; trajectory tracking; adaptive control; input saturation; Lyapunov function; stability;
D O I
10.1016/S0893-6080(03)00122-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the adaptive tracking problem of non-linear systems in presence of unknown parameters, unmodelled dynamics and input saturation. A high order recurrent neural network is used in order to identify the unknown system and a learning law is obtained using the Lyapunov methodology. Then a stabilizing control law for the reference tracking error dynamics is developed using the Lyapunov methodology and the Sontag control law. Tracking error boundedness is established as a function of a design parameter. The new approach is illustrated by examples of complex dynamical systems: chaos control and synchronization. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:711 / 717
页数:7
相关论文
共 13 条
[11]  
Suykens J. A. K., 1996, ARTIFICIAL NEURAL NE
[12]  
Vincent T. L., 1991, Dynamics and Control, V1, P35, DOI 10.1007/BF02169423
[13]   Adaptive control of chaos in Lorenz system [J].
Zeng, YM ;
Singh, SN .
DYNAMICS AND CONTROL, 1997, 7 (02) :143-154