Novel biomaterials for bisphosphonate delivery

被引:120
作者
Josse, S
Faucheux, C
Soueldan, A
Grimandi, G
Massiot, D
Alonso, B
Janvier, P
Laïb, S
Pilet, P
Gauthier, O
Daculsi, G
Guicheux, J
Bujoli, B
Bouler, JM
机构
[1] Univ Nantes, Fac Sci & Tech, Organ Synth Lab, CNRS,UMR 6513, F-44322 Nantes 3, France
[2] CNRS, FR 2465, F-44322 Nantes 3, France
[3] INSERM, EM 99 03, Fac Chirurgie Dent, Mat Interet Biol, F-44042 Nantes 1, France
[4] CNRS, CRMHT, UPR 4212, F-45071 Orleans 02, France
关键词
apatite structure; calcium phosphate; drug release; osteoclast;
D O I
10.1016/j.biomaterials.2004.05.019
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One type of gem-bisphosphonate (Zoledronate) has been chemically associated onto calcium phosphate (CaP) compounds of various compositions. For that purpose, CaP powders of controlled granulometry have been suspended in aqueous Zoledronate solutions of variable concentrations. Using mainly P-31 NMR spectroscopy, two different association modes have been observed, according to the nature of the Cap Support and/or the initial concentration of the Zoledronate solution. beta-tricalcium phosphate (beta-TCP) and mixtures of hydroxyapatite and beta-TCP (BCPs) appear to promote Zoledronate-containing crystals formation. On the other hand, at concentrations <0.05mol 1(-1) CDAs (calcium deficients apatites) seem to undergo chemisorption of the drug through a surface adsorption process, due to PO3 for PO4 exchange, that is well described by Freundlich equations. At concentrations > 0.05 mol 1(-1), crystalline needles of a Zoledronate complex form onto the CDAs surface. The ability of such materials to release Zoledronate. resulting in the inhibition of osteoclastic activity, was shown using a specific in vitro bone resorption model. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2073 / 2080
页数:8
相关论文
共 55 条
[1]   Silica xerogel carrier material for controlled release of toremifene citrate [J].
Ahola, M ;
Kortesuo, P ;
Kangasniemi, I ;
Kiesvaara, J ;
Yli-Urpo, A .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2000, 195 (1-2) :219-227
[2]   In vitro release of heparin from silica xerogels [J].
Ahola, MS ;
Säilynoja, ES ;
Raitavuo, MH ;
Vaahtio, MM ;
Salonen, JI ;
Yli-Urpo, AUO .
BIOMATERIALS, 2001, 22 (15) :2163-2170
[3]  
Ames B. N., 1966, METHOD ENZYMOL, V8, P115, DOI DOI 10.1016/0076-6879(66)08014-5
[4]   Sol-gel carrier systems for controlled drug delivery [J].
Böttcher, H ;
Slowik, P ;
Süss, W .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 1998, 13 (1-3) :277-281
[5]  
Bouler JM, 2000, J BIOMED MATER RES, V51, P680, DOI 10.1002/1097-4636(20000915)51:4<680::AID-JBM16>3.0.CO
[6]  
2-#
[7]   Calcium-deficient apatite:: A first in vivo study concerning bone ingrowth [J].
Bourgeois, B ;
Laboux, O ;
Obadia, L ;
Gauthier, O ;
Betti, E ;
Aguado, E ;
Daculsi, G ;
Bouler, JM .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 65A (03) :402-408
[8]   Controlled release of rhodium (II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix [J].
Burgos, AE ;
Belchior, JC ;
Sinisterra, RD .
BIOMATERIALS, 2002, 23 (12) :2519-2526
[9]  
Cavagna R, 1999, J LONG-TERM EFF MED, V9, P403
[10]   Biphasic calcium phosphate/hydrosoluble polymer composites: A new concept for bone and dental substitution biomaterials [J].
Daculsi, G ;
Weiss, P ;
Bouler, JM ;
Gauthier, O ;
Millot, F ;
Aguado, E .
BONE, 1999, 25 (02) :59S-61S