Minimum cutsets in hypercubes

被引:8
作者
Ramras, M [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
hypercube; separating set; edge cut; connectivity; diameter;
D O I
10.1016/j.disc.2004.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A local cut at a vertex v is a set consisting of, for each neighbor x of v, the vertex x or the edge nux. We prove that the local cuts are the smallest sets of vertices and/or edges whose deletion disconnects the k-dimensional hypercube Q(k). We also characterize the smallest sets of vertices and/or edges whose deletion produces a graph with larger diameter than Q(k). These are the sets consisting of k - 1 elements from a local cut. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 9 条
  • [1] EDGE DELETION PRESERVING THE DIAMETER OF THE HYPERCUBE
    BOUABDALLAH, A
    DELORME, C
    DJELLOUL, S
    [J]. DISCRETE APPLIED MATHEMATICS, 1995, 63 (01) : 91 - 95
  • [2] CHUNG FRK, 1984, J GRAPH THEOR, V8, P511, DOI 10.1002/jgt.3190080408
  • [3] GEODETIC CONNECTIVITY OF GRAPHS
    ENTRINGER, RC
    JACKSON, DE
    SLATER, PJ
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1977, 24 (08): : 460 - 463
  • [4] Erdos P, 1996, J GRAPH THEOR, V23, P119, DOI 10.1002/(SICI)1097-0118(199610)23:2<119::AID-JGT3>3.0.CO
  • [5] 2-W
  • [6] CHANGING AND UNCHANGING THE DIAMETER OF A HYPERCUBE
    GRAHAM, N
    HARARY, F
    [J]. DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 265 - 274
  • [7] DIAMETER VULNERABILITY OF GRAPHS
    PEYRAT, C
    [J]. DISCRETE APPLIED MATHEMATICS, 1984, 9 (03) : 245 - 250
  • [8] DIAMETER INCREASE CAUSED BY EDGE DELETION
    SCHOONE, AA
    BODLAENDER, HL
    VANLEEUWEN, J
    [J]. JOURNAL OF GRAPH THEORY, 1987, 11 (03) : 409 - 427
  • [9] West D. B., 1996, INTRO GRAPH THEORY