Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo

被引:71
作者
Ji, Na [2 ,4 ]
Hong, Yan [1 ,2 ,3 ]
Gu, Zhengbiao [1 ,2 ,3 ]
Cheng, Li [1 ,2 ,3 ]
Li, Zhaofeng [1 ,2 ,3 ]
Li, Caiming [1 ,2 ,3 ]
机构
[1] Minist Educ, Key Lab Synerget & Biol Colloids, 1800 LiHu Ave, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Food Sci & Technol, 1800 LiHu Ave, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, Collaborat Innovat Ctr Food Safety & Qual Control, 1800 LiHu Ave, Wuxi 214122, Jiangsu, Peoples R China
[4] Qingdao Agr Univ, Coll Food Sci & Engn, Qingdao 266109, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Oral delivery; Paracellular transport; Caco-2; Tight junctions; Hypoglycemic effect; NANOPARTICLES; DELIVERY; PH; FABRICATION; ABSORPTION; BARRIERS; PEPTIDE; LAYER;
D O I
10.1016/j.jconrel.2019.10.006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Non-invasive means of insulin administration circumvent some of the inconveniences of injections. Oral administration in particular is convenient, pain-free, and allows favorable glucose homeostasis, but is subject to chemical instability, enzymatic degradation, and poor gastrointestinal absorption. Natural polymeric nanoparticles have emerged as a promising oral delivery system for peptide therapeutics due their safety, biocompatibility, and stability. In this study, self-assembled nanocomposites from chitosan (CS) and insulin-loaded, zein-carboxymethylated short-chain amylose (IN-Z-CSA) nanocomposites were synthesized to improve oral bioavailability of insulin. The optimized IN-Z-CSA/CS0.2% nanocomposites exhibited an average size of 311.32 +/- 6.98 nm, a low polydispersity index (0.227 +/- 0.01), a negative zeta potential (43.77 +/- 1.36 mV), an encapsulation efficiency of 89.6 +/- 0.9%, and a loading capacity of 6.8 +/- 0.4%. The IN-Z-CSA/CS0.2% nanocomposites were stable in storage conditions. The transepithelial permeability of the N-Z-CSA/CS0.2% nanocomposites was 12-fold higher than that of insulin. Cellular uptake studies revealed that the IN-Z-CSA/CS0.2% nanocomposites were internalized into Caco-2 cells by both endocytosis and a paracellular route. Additionally, in pharmacological studies, orally administered IN-Z-CSA/CS0.2% nanocomposites had a stronger hypoglycemic effect with a relative bioavailability of 15.19% compared with that of IN-Z-CSA(1.0%) nanocomposites. Furthermore, cell toxicity and in vivo tests revealed that the IN-Z-CSA/CS0.2% nanocomposites were biocompatible. Overall, these results indicate that the IN-Z-CSA/CS0.2% nanocomposites can improve oral bioavailability of insulin and are a promising delivery system for insulin or other peptide/protein drugs.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 49 条
[31]   Application of chitosan matrix for delivery of rutin [J].
Queiroz de Arruda, Iza Natalia ;
Pereira, Valdir Aniceto, Jr. ;
Stefani, Ricardo .
JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2017, 14 (03) :561-566
[32]   Current state and challenges in developing oral vaccines [J].
Ramirez, Julia E. Vela ;
Sharpe, Lindsey A. ;
Peppas, Nicholas A. .
ADVANCED DRUG DELIVERY REVIEWS, 2017, 114 :116-131
[33]   Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates [J].
Sheng, Jianyong ;
He, Huining ;
Han, Limei ;
Qin, Jing ;
Chen, Sunhui ;
Ru, Ge ;
Li, Ruixiang ;
Yang, Pei ;
Wang, Jianxin ;
Yang, Victor C. .
JOURNAL OF CONTROLLED RELEASE, 2016, 233 :181-190
[34]   N-Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption [J].
Sheng, Jianyong ;
Han, Limei ;
Qin, Jing ;
Ru, Ge ;
Li, Ruixiang ;
Wu, Lihong ;
Cui, Dongqi ;
Yang, Pei ;
He, Yuwei ;
Wang, Jianxin .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (28) :15430-15441
[35]   Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin [J].
Shrestha, Neha ;
Araujo, Francisca ;
Shahbazi, Mohammad-Ali ;
Makila, Ermei ;
Gomes, Maria Joao ;
Herranz-Blanco, Barbara ;
Lindgren, Rici ;
Granroth, Sari ;
Kukk, Edwin ;
Salonen, Jarno ;
Hirvonen, Jouni ;
Sarmento, Bruno ;
Santos, Helder A. .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (20) :3405-3416
[36]   Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions [J].
Silva, Helder D. ;
Beldikova, Eliska ;
Poejo, Joana ;
Abrunhosa, Luis ;
Serra, Ana Teresa ;
Duarte, Catarina M. M. ;
Branyik, Tomag ;
Cerqueira, Miguel A. ;
Pinheiro, Ana C. ;
Vicente, Antnio A. .
JOURNAL OF FOOD ENGINEERING, 2019, 243 :89-100
[37]   Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling [J].
Soares, Paula I. P. ;
Sousa, Ana Isabel ;
Silva, Jorge Carvalho ;
Ferreira, Isabel M. M. ;
Novo, Carlos M. M. ;
Borges, Joao Paulo .
CARBOHYDRATE POLYMERS, 2016, 147 :304-312
[38]   Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins [J].
Sonaje, Kiran ;
Lin, Kun-Ju ;
Tseng, Michael T. ;
Wey, Shiaw-Pyng ;
Su, Fang-Yi ;
Chuang, Er-Yuan ;
Hsu, Chia-Wei ;
Chen, Chiung-Tong ;
Sung, Hsing-Wen .
BIOMATERIALS, 2011, 32 (33) :8712-8721
[39]   Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-Responsive nanoparticles vs. subcutaneous injection [J].
Sonaje, Kiran ;
Lin, Kun-Ju ;
Wey, Shiaw-Pyng ;
Lin, Che-Kuan ;
Yeh, Tzyy-Harn ;
Nguyen, Ho-Ngoc ;
HsuA, Chia-Wei ;
Yen, Tzu-Chen ;
Juang, Jyuhn-Huarng ;
Sung, Hsing-Wen .
BIOMATERIALS, 2010, 31 (26) :6849-6858
[40]   Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo [J].
Sun, Lei ;
Zhang, Xinge ;
Wu, Zhongming ;
Zheng, Chao ;
Li, Chaoxing .
POLYMER CHEMISTRY, 2014, 5 (06) :1999-2009