Using neural networks to estimate redshift distributions. An application to CFHTLenS

被引:58
作者
Bonnett, Christopher [1 ,2 ]
机构
[1] CSIC IEEC, Inst Ciencies Espai, Fac Ciencies, E-08193 Barcelona, Spain
[2] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain
关键词
gravitational lensing: weak; galaxies: distances and redshifts; galaxies: statistics; distance scale; large scale structure of Universe; TELESCOPE LENSING SURVEY; VLT DEEP SURVEY; PHOTOMETRIC REDSHIFTS; RANDOM FORESTS; GALAXIES; CLASSIFICATION; INFORMATION; PREDICTION; EVOLUTION; TREES;
D O I
10.1093/mnras/stv230
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel way of using neural networks (NN) to estimate the redshift distribution of a galaxy sample. We are able to obtain a probability density function (PDF) for each galaxy using a classification NN. The method is applied to 58 714 galaxies in CFHTLenS that have spectroscopic redshifts from DEEP2, VVDS and VIPERS. Using this data, we show that the stacked PDFs give an excellent representation of the true N(z) using information from 5, 4 or 3 photometric bands. We show that the fractional error due to using N((zphot)) instead of N((ztruth)) is <= 1 per cent on the lensing power spectrum (P-k) in several tomographic bins. Further, we investigate how well this method performs when few training samples are available and show that in this regime the NN slightly overestimates the N(z) at high z. Finally, the case where the training sample is not representative of the full data set is investigated.
引用
收藏
页码:1043 / 1056
页数:14
相关论文
共 47 条
[1]  
Albrecht A., 2006, astro-ph/0609591
[2]  
[Anonymous], 2002, Information Theory, Inference Learning Algorithms
[3]   Measuring and modelling the redshift evolution of clustering:: the Hubble Deep Field North [J].
Arnouts, S ;
Cristiani, S ;
Moscardini, L ;
Matarrese, S ;
Lucchin, F ;
Fontana, A ;
Giallongo, E .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (02) :540-556
[4]   Weak gravitational lensing [J].
Bartelmann, M ;
Schneider, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 340 (4-5) :291-472
[5]  
Baum W. A., 1962, P IAU S, V15, P390
[6]  
Benitez N., 1998, APJ, V536, P36
[7]   Photometric redshifts: estimating their contamination and distribution using clustering information [J].
Benjamin, Jonathan ;
Van Waerbeke, Ludovic ;
Menard, Brice ;
Kilbinger, Martin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 408 (02) :1168-1180
[8]   SExtractor: Software for source extraction [J].
Bertin, E ;
Arnouts, S .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 117 (02) :393-404
[9]   RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS [J].
Carliles, Samuel ;
Budavari, Tamas ;
Heinis, Sebastien ;
Priebe, Carey ;
Szalay, Alexander S. .
ASTROPHYSICAL JOURNAL, 2010, 712 (01) :511-515
[10]   Photometric redshifts with the quasi Newton algorithm (MLPQNA) Results in the PHAT1 contest [J].
Cavuoti, S. ;
Brescia, M. ;
Longo, G. ;
Mercurio, A. .
ASTRONOMY & ASTROPHYSICS, 2012, 546