Numerical verification of weakly turbulent law of wind wave growth

被引:6
|
作者
Badulin, Sergei I. [1 ]
Babanin, Alexander V. [2 ]
Zakharov, Vladimir E. [3 ,4 ]
Resio, Donald T. [5 ]
机构
[1] PP Shirshov Oceanol Inst, Moscow, Russia
[2] Swinburne Univ Technol, Melbourne, Vic, Australia
[3] PN Lebedev Phys Inst, Moscow, Russia
[4] Univ Arizona, LLC, Waves Soitons, Tucson, AZ 85721 USA
[5] Waterways Expt Stn, Vicksburg, MS USA
来源
IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE | 2008年 / 6卷
基金
俄罗斯基础研究基金会;
关键词
wind waves; kinetic Hasselmann equation; weak turbulence; Kolmogorov-Zakharov solutions; self-similarity;
D O I
10.1007/978-1-4020-6744-0_18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical solutions of the kinetic equation for deep water wind waves (the Hasselmann equation) for various functions of external forcing are analyzed. For wave growth in spatially homogeneous sea (the so-called duration-limited case) the numerical solutions are related with approximate self-similar solutions of the Hasselmann equation. These self-similar solutions are shown to be considered as a generalization of the classic Kolmogorov-Zakharov solutions in the theory of weak turbulence. Asymptotic law of wave growth that relates total wave energy with net total energy input (energy flux at high frequencies) is proposed. Estimates of self-similarity parameter that links energy and spectral flux and can be considered as an analogue of Kolmogorov-Zakharov constants are obtained numerically.
引用
收藏
页码:211 / +
页数:3
相关论文
共 50 条
  • [41] NUMERICAL-MODEL OF WIND WAVE COUPLING
    SCHOENST.AL
    WILLIAMS, RT
    DAVIDSON, KL
    STAUFFER, BC
    DUNNING, KG
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1974, 55 (12): : 1125 - 1125
  • [42] Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak
    Agarwal A.
    Irtaza H.
    Journal of The Institution of Engineers (India): Series A, 2018, 99 (2) : 311 - 320
  • [43] WIND WAVE NUMERICAL MODELING IN THE CASPIAN SEA
    Mahmoodi, R.
    Ardalan, A. A.
    Hasanlou, M.
    ISPRS INTERNATIONAL JOINT CONFERENCES OF THE 2ND GEOSPATIAL INFORMATION RESEARCH (GI RESEARCH 2017); THE 4TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING (SMPR 2017); THE 6TH EARTH OBSERVATION OF ENVIRONMENTAL CHANGES (EOEC 2017), 2017, 42-4 (W4): : 513 - 516
  • [44] Numerical Analysis of the Effect of Offshore Turbulent Wind Inflow on the Response of a Spar Wind Turbine
    Putri, Rieska Mawarni
    Obhrai, Charlotte
    Jakobsen, Jasna Bogunovic
    Ong, Muk Chen
    ENERGIES, 2020, 13 (10)
  • [45] A direct numerical simulation study of vorticity transformation in weakly turbulent premixed flames
    Lipatnikov, A. N.
    Nishiki, S.
    Hasegawa, T.
    PHYSICS OF FLUIDS, 2014, 26 (10)
  • [46] Numerical analysis of turbulent flow developing in a 90° bend with weakly swirling flows
    Sugiyama, H
    Akiyama, M
    Shinohara, Y
    JOURNAL OF THE ATOMIC ENERGY SOCIETY OF JAPAN, 2000, 42 (06): : 557 - 566
  • [47] NUMERICAL SIMULATION OF TRAVELING WAVE CONVECTION IN A WEAKLY NONLINEAR REGIME
    Ning Li zhong ]Department of Hydraulic Engineering
    Journal of Hydrodynamics(SerB)., 2000, (02) : 20 - 30
  • [48] On the nonlinear effects due to water wave interaction with a turbulent wind
    Reutov, VP
    Troitskaya, YI
    IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1995, 31 (06): : 825 - 834
  • [49] Langmuir Wave Decay In Turbulent Inhomogeneous Solar Wind Plasmas
    Krafft, C.
    Volokitin, A.
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL SOLAR WIND CONFERENCE (SOLAR WIND 14), 2016, 1720
  • [50] Scaling turbulent atmospheric stratification: A turbulence/wave wind model
    Lovejoy, S.
    Schertzer, D.
    WIND ENERGY, 2007, : 135 - +