Numerical verification of weakly turbulent law of wind wave growth

被引:6
|
作者
Badulin, Sergei I. [1 ]
Babanin, Alexander V. [2 ]
Zakharov, Vladimir E. [3 ,4 ]
Resio, Donald T. [5 ]
机构
[1] PP Shirshov Oceanol Inst, Moscow, Russia
[2] Swinburne Univ Technol, Melbourne, Vic, Australia
[3] PN Lebedev Phys Inst, Moscow, Russia
[4] Univ Arizona, LLC, Waves Soitons, Tucson, AZ 85721 USA
[5] Waterways Expt Stn, Vicksburg, MS USA
来源
IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE | 2008年 / 6卷
基金
俄罗斯基础研究基金会;
关键词
wind waves; kinetic Hasselmann equation; weak turbulence; Kolmogorov-Zakharov solutions; self-similarity;
D O I
10.1007/978-1-4020-6744-0_18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical solutions of the kinetic equation for deep water wind waves (the Hasselmann equation) for various functions of external forcing are analyzed. For wave growth in spatially homogeneous sea (the so-called duration-limited case) the numerical solutions are related with approximate self-similar solutions of the Hasselmann equation. These self-similar solutions are shown to be considered as a generalization of the classic Kolmogorov-Zakharov solutions in the theory of weak turbulence. Asymptotic law of wave growth that relates total wave energy with net total energy input (energy flux at high frequencies) is proposed. Estimates of self-similarity parameter that links energy and spectral flux and can be considered as an analogue of Kolmogorov-Zakharov constants are obtained numerically.
引用
收藏
页码:211 / +
页数:3
相关论文
共 50 条
  • [21] Numerical verification of the field synergy principle for turbulent flow
    Zeng, M
    Tao, WQ
    JOURNAL OF ENHANCED HEAT TRANSFER, 2004, 11 (04) : 453 - 459
  • [22] RENORMALIZATION OF WAVE-PARTICLE INTERACTION IN WEAKLY TURBULENT PLASMAS
    KONO, M
    ICHIKAWA, YH
    PROGRESS OF THEORETICAL PHYSICS, 1973, 49 (03): : 754 - 763
  • [23] PLANE-WAVE DIFFRACTION FOR LIGHT IN A WEAKLY TURBULENT MEDIUM
    HILLION, P
    QUINNEZ, S
    JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1982, 13 (01): : 41 - 48
  • [24] STATIONARY WEAKLY TURBULENT DISTRIBUTIONS IN A SPIN-WAVE SYSTEM
    LUTOVINOV, VS
    CHECHETKIN, VR
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1979, 76 (01): : 223 - 230
  • [25] DISPERSION LAW AND NONLINEAR INTERACTION OF LANGMUIR WAVES IN A WEAKLY TURBULENT PLASMA
    GORBUNOV, LM
    TUMERBUL.AM
    SOVIET PHYSICS JETP-USSR, 1968, 26 (04): : 861 - &
  • [26] Numerical Investigation of an Atypical Building in Turbulent Wind Flow
    Hubova, Olga
    Macak, Marek
    5TH WORLD MULTIDISCIPLINARY CIVIL ENGINEERING-ARCHITECTURE-URBAN PLANNING SYMPOSIUM (WMCAUS), 2020, 960
  • [27] Method of verification for numerical wave tank force
    Kim, C.H.
    Wang, Z.M.
    Sebastian, A.
    Boo, S.Y.
    Proceedings of the International Offshore and Polar Engineering Conference, 1999, 3 : 317 - 322
  • [28] Method of verification for numerical wave tank force
    Kim, CH
    Wang, ZM
    Sebastian, A
    Boo, SY
    PROCEEDINGS OF THE NINTH (1999) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 1999, 1999, : 317 - 322
  • [29] Best practice for verification of wind turbine numerical models
    Huhn, M. L.
    Popko, W.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [30] WAVE GROWTH IN A STRONGLY TURBULENT PLASMA
    BIRMINGH.TJ
    BORNATIC.M
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1243 - &