Numerical verification of weakly turbulent law of wind wave growth

被引:6
|
作者
Badulin, Sergei I. [1 ]
Babanin, Alexander V. [2 ]
Zakharov, Vladimir E. [3 ,4 ]
Resio, Donald T. [5 ]
机构
[1] PP Shirshov Oceanol Inst, Moscow, Russia
[2] Swinburne Univ Technol, Melbourne, Vic, Australia
[3] PN Lebedev Phys Inst, Moscow, Russia
[4] Univ Arizona, LLC, Waves Soitons, Tucson, AZ 85721 USA
[5] Waterways Expt Stn, Vicksburg, MS USA
来源
IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE | 2008年 / 6卷
基金
俄罗斯基础研究基金会;
关键词
wind waves; kinetic Hasselmann equation; weak turbulence; Kolmogorov-Zakharov solutions; self-similarity;
D O I
10.1007/978-1-4020-6744-0_18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical solutions of the kinetic equation for deep water wind waves (the Hasselmann equation) for various functions of external forcing are analyzed. For wave growth in spatially homogeneous sea (the so-called duration-limited case) the numerical solutions are related with approximate self-similar solutions of the Hasselmann equation. These self-similar solutions are shown to be considered as a generalization of the classic Kolmogorov-Zakharov solutions in the theory of weak turbulence. Asymptotic law of wave growth that relates total wave energy with net total energy input (energy flux at high frequencies) is proposed. Estimates of self-similarity parameter that links energy and spectral flux and can be considered as an analogue of Kolmogorov-Zakharov constants are obtained numerically.
引用
收藏
页码:211 / +
页数:3
相关论文
共 50 条
  • [1] Weakly turbulent laws of wind-wave growth
    Badulin, Sergei I.
    Babanin, Alexander V.
    Zakharov, Vladimir E.
    Resio, Donald
    JOURNAL OF FLUID MECHANICS, 2007, 591 (339-378) : 339 - 378
  • [2] REFINED LAW OF WIND WAVE LENGTH GROWTH
    SHULEJKIN, WW
    DOKLADY AKADEMII NAUK SSSR, 1956, 111 (02): : 348 - 351
  • [3] On weakly turbulent scaling of wind sea in simulations of fetch-limited growth
    Gagnaire-Renou, Elodie
    Benoit, Michel
    Badulin, Sergei I.
    JOURNAL OF FLUID MECHANICS, 2011, 669 : 178 - 213
  • [4] KINETICS OF WEAKLY TURBULENT WAVE FIELDS
    YEROFEYEV, VI
    MALKIN, VM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1989, 96 (05): : 1666 - 1697
  • [5] A numerical study of a weakly stratified turbulent wake
    Redford, J. A.
    Lund, T. S.
    Coleman, G. N.
    JOURNAL OF FLUID MECHANICS, 2015, 776 : 568 - 609
  • [6] PLASMA WAVE ECHO IN A WEAKLY TURBULENT PLASMA
    ICHIKAWA, YH
    SANUKI, H
    PHYSICS OF FLUIDS, 1970, 13 (06) : 1573 - &
  • [7] WAVE PROPAGATION IN A WEAKLY TURBULENT MAGNETIZED PLASMA
    FIDONE, I
    PLASMA PHYSICS, 1969, 11 (08): : 669 - &
  • [8] LAGRANGIAN FORMULATION OF WAVE KINETICS IN A WEAKLY TURBULENT PLASMA
    SURAMLIS.GI
    NUCLEAR FUSION, 1965, 5 (03) : 210 - +
  • [9] Revisiting wind wave growth with fully coupled direct numerical simulations
    Wu, Jiarong
    Popinet, Stephane
    Deike, Luc
    JOURNAL OF FLUID MECHANICS, 2022, 951
  • [10] A POWER WIND LAW FOR TURBULENT TRANSFER COMPUTATIONS
    BRUTSAERT, W
    YEH, GT
    WATER RESOURCES RESEARCH, 1970, 6 (05) : 1387 - +