Overexpression of Iris lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt tolerance in tobacco

被引:21
|
作者
Guo, Q. [1 ]
Tian, X. X. [1 ]
Mao, P. C. [1 ]
Meng, L. [1 ]
机构
[1] Beijing Acad Agr & Forestry Sci, Beijing Res & Dev Ctr Grass & Environm, Beijing 100097, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
K+/Na+ ratios; Na+ compartmentalization; Nicotiana tabacum; tonoplast Na+/H+ antiporter; vacuolar H+-ATPase; SALINITY TOLERANCE; STRESS TOLERANCE; ION HOMEOSTASIS; TRANSPORT; EXCHANGER; VACUOLES; ATNHX1; COMPARTMENTATION; IDENTIFICATION; EXPRESSION;
D O I
10.32615/bp.2019.126
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sodium cation compartmentalization into vacuoles is one of the effective strategies for adaptation of halophytes to saline environments. Tonoplast Na+/H+ antiporter (NHX) is involved in Na+ sequestration into vacuoles under salt stress. However, the function of NHX in halophyte Iris lactea is still unclear. In this study, a significant positive correlation was observed between Na+ accumulations and IlNHX expression in tissues under 0 - 200 mM NaCl, indicating IlNHX might be responsible for Na+ accumulation of I. lactea under salt stress. More important, IlNHX was specifically localized to the tonoplast. Transgenic tobacco expressing IlNHX grew better and showed higher tolerance to 200 mM NaCl than respective wild type (WT). Compared to WT, transgenic tobacco accumulated more Na+ and K+ and maintained higher K+/Na+ ratios in tissues, accompanied by the reduction of chlorophyll loss and lipid peroxidation in the presence of NaCl. Moreover, transgenic tobacco exhibited markedly higher vacuolar H+-ATPase (V-ATPase) activity relative to WT when subjected to salt stress. The findings suggest that transgenic plants overexpressing IlNHX could compartmentalize more Na+ into vacuoles in tobacco via enhanced V-ATPase activity, which further contributes to maintaining K+ and Na+ homeostasis, to improved photosynthesis, and to protection of cell membrane integrity under salt stress.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 50 条
  • [1] Overexpression of BvNHX1, a novel tonoplast Na+/H+ antiporter gene from sugar beet (Betavulgaris), confers enhanced salt tolerance in transgenic tobacco
    Zhang, Xin-Miao
    Wu, Guo-Qiang
    Wei, Ming
    Kang, Hong-Xia
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 34 (1) : 211 - 223
  • [2] A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis
    Al-Harrasi, Ibtisam
    Jana, Gerry Aplang
    Patankar, Himanshu, V
    Al-Yahyai, Rashid
    Rajappa, Sivamathini
    Kumar, Prakash P.
    Yaish, Mahmoud W.
    PLANT CELL REPORTS, 2020, 39 (08) : 1079 - 1093
  • [3] Overexpression of a tonoplast Na+/H+ antiporter from the halophytic shrub Nitraria sibirica improved salt tolerance and root development in transgenic poplar
    Geng, Xin
    Chen, Shouye
    Yilan, E.
    Zhang, Wenbo
    Mao, Huiping
    Qiqige, Alatan
    Wang, Yingchun
    Qi, Zhi
    Lin, Xiaofei
    TREE GENETICS & GENOMES, 2020, 16 (06)
  • [4] A Novel Plant Vacuolar Na+/H+ Antiporter Gene Evolved by DNA Shuffling Confers Improved Salt Tolerance in Yeast
    Xu, Kai
    Zhang, Hui
    Blumwald, Eduardo
    Xia, Tao
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (30) : 22997 - 23004
  • [5] Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana
    Jinyao Li
    Gangqiang Jiang
    Ping Huang
    Ji Ma
    Fuchun Zhang
    Plant Cell, Tissue and Organ Culture, 2007, 90
  • [6] The novel Na+/H+ antiporter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast
    Zhou, Yang
    Yang, Chenglong
    Hu, Yanping
    Yin, Xiaochang
    Li, Ruimei
    Fu, Shaoping
    Zhu, Baibi
    Guo, Jianchun
    Jiang, Xingyu
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (03)
  • [7] Incorporation of Na+/H+ antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max L.)
    Liu, Jianfeng
    Zhang, Shuling
    Dong, Lijun
    Chu, Jianzhou
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2014, 51 (01) : 58 - 65
  • [8] Overexpression of PbrNHX2 gene, a Na+/H+ antiporter gene isolated from Pyres betulaefolia, confers enhanced tolerance to salt stress via modulating ROS levels
    Dong, Huizhen
    Wang, Chunmeng
    Xing, Caihua
    Yang, Tianyuan
    Yan, Jinxuan
    Gao, Junzhi
    Li, Dingli
    Wang, Ran
    Blumwald, Eduardo
    Zhang, Shaoling
    Huang, Xiaosan
    PLANT SCIENCE, 2019, 285 : 14 - 25
  • [9] Overexpression of HvNHX2, a vacuolar Na+/H+ antiporter gene from barley, improves salt tolerance in Arabidopsis thaliana
    Bayat, F.
    Shiran, B.
    Belyaev, D. V.
    AUSTRALIAN JOURNAL OF CROP SCIENCE, 2011, 5 (04) : 428 - 432
  • [10] A new Na+/H+ antiporter gene KvNHX1 isolated from the halophyte Kosteletzkya virginica improves salt tolerance in transgenic tobacco
    Wang, Hongyan
    Ding, Qiang
    Wang, Honglei
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2018, 32 (06) : 1378 - 1386