A SINGULARITY ANALYSIS OF POSITIVE SOLUTIONS TO AN EULER-LAGRANGE INTEGRAL SYSTEM

被引:7
作者
Bebernes, Jerrold [1 ]
Lei, Yutian [2 ]
Li, Congming [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210097, Peoples R China
关键词
Integral equations; weighted Hardy-Littlewood-Sobolev inequality; asymptotic analysis; ASYMPTOTIC SYMMETRY; ELLIPTIC-EQUATIONS; BEHAVIOR; SOBOLEV;
D O I
10.1216/RMJ-2011-41-2-387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the asymptotic behavior of the positive solutions of the following system of Euler-Lagrange equations of Hardy-Littlewood-Sobolev type in R-n u(x) = 1/vertical bar x vertical bar(alpha) integral(n)(R) v(y)(q)/vertical bar y vertical bar(beta)vertical bar x - y vertical bar(lambda) dy, v(x) = 1/vertical bar x vertical bar(beta) integral(n)(R) u(y)(p)/vertical bar y vertical bar(alpha)vertical bar x - y vertical bar(lambda) dy. We obtain the growth rate of the solutions around the origin and the decay rate near infinity. Some new cases beyond the work of Li and Lim [17] are studied here. In [15], the authors obtained the asymptotic estimates of solutions for the case alpha,beta >= 0. In this paper, we extend the case alpha,beta >= 0 to alpha + beta >= 0 with some restriction, and we obtain asymptotic estimates for the solutions.
引用
收藏
页码:387 / 410
页数:24
相关论文
共 24 条
[11]  
Fraenkel LE., 2000, CAMBRIDGE TRACTS MAT
[12]  
Gidas B., 1981, ADV MATH A, V7a
[13]   Symmetry of solutions to some systems of integral equations [J].
Jin, C ;
Li, CM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) :1661-1670
[14]   Quantitative analysis of some system of integral equations [J].
Jin, Chao ;
Li, Congming .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (04) :447-457
[15]   ASYMPTOTIC BEHAVIOR FOR SOLUTIONS OF SOME INTEGRAL EQUATIONS [J].
Lei, Yutian ;
Ma, Chao .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) :193-207
[16]  
Li CM, 1996, INVENT MATH, V123, P221, DOI 10.1007/s002220050023
[17]   The singularity analysis of solutions to some integral equations [J].
Li, Congming ;
Lim, Jisun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (02) :453-464
[18]  
Lieb E., 2001, Analysis
[19]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374
[20]  
Ou B, 1999, HOUSTON J MATH, V25, P181