A SINGULARITY ANALYSIS OF POSITIVE SOLUTIONS TO AN EULER-LAGRANGE INTEGRAL SYSTEM

被引:7
作者
Bebernes, Jerrold [1 ]
Lei, Yutian [2 ]
Li, Congming [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210097, Peoples R China
关键词
Integral equations; weighted Hardy-Littlewood-Sobolev inequality; asymptotic analysis; ASYMPTOTIC SYMMETRY; ELLIPTIC-EQUATIONS; BEHAVIOR; SOBOLEV;
D O I
10.1216/RMJ-2011-41-2-387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the asymptotic behavior of the positive solutions of the following system of Euler-Lagrange equations of Hardy-Littlewood-Sobolev type in R-n u(x) = 1/vertical bar x vertical bar(alpha) integral(n)(R) v(y)(q)/vertical bar y vertical bar(beta)vertical bar x - y vertical bar(lambda) dy, v(x) = 1/vertical bar x vertical bar(beta) integral(n)(R) u(y)(p)/vertical bar y vertical bar(alpha)vertical bar x - y vertical bar(lambda) dy. We obtain the growth rate of the solutions around the origin and the decay rate near infinity. Some new cases beyond the work of Li and Lim [17] are studied here. In [15], the authors obtained the asymptotic estimates of solutions for the case alpha,beta >= 0. In this paper, we extend the case alpha,beta >= 0 to alpha + beta >= 0 with some restriction, and we obtain asymptotic estimates for the solutions.
引用
收藏
页码:387 / 410
页数:24
相关论文
共 24 条
[1]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[2]  
Chang A., 1997, MATH RES LETT, V4, P1
[3]  
CHEN W, 2005, SCIENCE, V4, P1
[4]  
CHEN W, 2008, SCIENCE, V136, P955
[5]  
CHEN W, 2006, SCIENCE, V59, P330
[6]  
CHEN W, 2005, DISCRETE CONTINUOUS, V5, P164
[7]  
CHEN W, 2005, SCIENCE, V12, P347
[8]  
CHEN W, 2005, SCIENCE, V30, P59
[9]  
CHEN W, 1991, SCIENCE, V63, P615
[10]  
CHEN W, 1997, SCIENCE, V145, P547