Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone

被引:32
|
作者
Ruediger, G. [2 ]
Kitchatinov, L. L. [1 ,3 ]
Brandenburg, A. [4 ,5 ]
机构
[1] Inst Solar Terr Phys, Irkutsk 664033, Russia
[2] Astrophys Inst Potsdam, D-14482 Potsdam, Germany
[3] Pulkovo Astron Observ, St Petersburg 196140, Russia
[4] AlbaNova Univ Ctr, NORDITA, S-10691 Stockholm, Sweden
[5] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden
基金
欧洲研究理事会; 俄罗斯基础研究基金会; 瑞典研究理事会;
关键词
Magnetohydrodynamics (MHD); Sun: magnetic field; FLOW PATTERNS; DYNAMO THEORY; LARGE-SCALE; FIELDS; SIMULATIONS;
D O I
10.1007/s11207-010-9683-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a density-stratified turbulent medium, the cross helicity (u' . B') is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s(-1). Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [1] Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone
    G. Rüdiger
    L. L. Kitchatinov
    A. Brandenburg
    Solar Physics, 2011, 269 : 3 - 12
  • [2] Helicity-vorticity turbulent pumping of magnetic fields in the solar convection zone
    Pipin, V. V.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2013, 107 (1-2) : 185 - 206
  • [3] The contribution of kinetic helicity to turbulent magnetic diffusivity
    Brandenburg, A.
    Schober, J.
    Rogachevskii, I.
    ASTRONOMISCHE NACHRICHTEN, 2017, 338 (07) : 790 - 793
  • [4] Turbulent magnetic helicity fluxes in solar convective zone
    Kleeorin, N.
    Rogachevskii, I
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (04) : 5437 - 5448
  • [5] PROPERTIES OF MAGNETIC HELICITY FLUX IN TURBULENT DYNAMOS
    Vishniac, Ethan T.
    Shapovalov, Dmitry
    ASTROPHYSICAL JOURNAL, 2014, 780 (02)
  • [6] CURRENT HELICITY OF ACTIVE REGIONS AS A TRACER OF LARGE-SCALE SOLAR MAGNETIC HELICITY
    Zhang, H.
    Moss, D.
    Kleeorin, N.
    Kuzanyan, K.
    Rogachevskii, I.
    Sokoloff, D.
    Gao, Y.
    Xu, H.
    ASTROPHYSICAL JOURNAL, 2012, 751 (01)
  • [7] Two-scale Analysis of Solar Magnetic Helicity
    Brandenburg, Axel
    Petrie, Gordon J. D.
    Singh, Nishant K.
    ASTROPHYSICAL JOURNAL, 2017, 836 (01)
  • [8] Modelling magnetic flux emergence in the solar convection zone
    Bushby, P. J.
    Archontis, V.
    ASTRONOMY & ASTROPHYSICS, 2012, 545
  • [9] Storage of magnetic flux at the bottom of the solar convection zone
    Rempel, M
    Schüssler, M
    Tóth, G
    ASTRONOMY & ASTROPHYSICS, 2000, 363 (02) : 789 - 799
  • [10] SCALE DEPENDENCE OF MAGNETIC HELICITY IN THE SOLAR WIND
    Brandenburg, Axel
    Subramanian, Kandaswamy
    Balogh, Andre
    Goldstein, Melvyn L.
    ASTROPHYSICAL JOURNAL, 2011, 734 (01)