The effects of bending on plasmonic modes in nanowires and planar structures

被引:3
作者
Bellido, Edson P. [2 ]
Bicket, Isobel C. [2 ,3 ]
Botton, Gianluigi A. [1 ]
机构
[1] Canadian Light Source, Saskatoon, SK, Canada
[2] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON, Canada
[3] McMaster Univ, Canadian Ctr Electron Microscopy, Hamilton, ON, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
antennas; coupling; EELS; hybridization; nanowires; plasmonics; ENERGY-LOSS SPECTROSCOPY; EDGE MODES; SURFACE; LIGHT; PROPAGATION; RESONANCES; RESOLUTION; MNPBEM; GOLD;
D O I
10.1515/nanoph-2021-0449
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we investigate the effects of bends on the surface plasmon resonances in nanowires (NWs) and isolated edges of planar structures using electron energy loss spectroscopy experiments and theoretical calculations. Previous work showed that the sharp bends in NWs do not affect their resonant modes. Here, we study previously overlooked effects and analyze systematically the evolution of resonant modes for several bending angles from 30 degrees to 180 degrees, showing that bending can have a significant effect on the plasmonic response of a nanostructure. In NWs, the modes can experience significant energy shifts that depend on the aspect ratio of the NW and can cause mode intersection and antinode bunching. We establish the relation between NW modes and edge modes and show that bending can even induce antinode splitting in edge modes. This work demonstrates that bends in plasmonic planar nanostructures can have a profound effect on their optical response and this must be accounted for in the design of optical devices.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 50 条
[41]   Third Harmonic Mechanism in Complex Plasmonic Fano Structures [J].
Metzger, Bernd ;
Schumacher, Thorsten ;
Hentschel, Mario ;
Lippitz, Markus ;
Giessen, Harald .
ACS PHOTONICS, 2014, 1 (06) :471-476
[42]   Optical interaction between small plasmonic nanowires: a perspective from induced forces and torques [J].
Abraham Ekeroth, Ricardo M. .
JOURNAL OF OPTICS, 2016, 18 (08)
[43]   Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing [J].
Marinaro, Giovanni ;
Das, Gobind ;
Giugni, Andrea ;
Allione, Marco ;
Torre, Bruno ;
Candeloro, Patrizio ;
Kosel, Jurgen ;
Di Fabrizio, Enzo .
MATERIALS, 2018, 11 (05)
[44]   Plasmonic behavior of Ag/dielectric nanowires and the effect of geometry [J].
Prokes, S. M. ;
Alexson, D. ;
Glembocki, O. J. ;
Park, H. D. ;
Rendell, R. W. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (04) :2055-2061
[45]   Plasmonic cavities for increasing the radiative efficiency of GaAs nanowires [J].
Mokkapati, S. ;
Saxena, D. ;
Jiang, Nian ;
Tan, H. H. ;
Jagadish, C. .
2014 CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS AND DEVICES (COMMAD 2014), 2014, :244-245
[46]   Simulating light scattering from supported plasmonic nanowires [J].
Miljkovic, Vladimir D. ;
Shegai, Timur ;
Johansson, Peter ;
Kall, Mikael .
OPTICS EXPRESS, 2012, 20 (10) :10816-10826
[47]   Hybrid Toroidal Modes in Planar Core-Shell Metamaterial Structures [J].
Akter, Naznin ;
Karabiyik, Mustafa ;
Pala, Nezih .
2018 IEEE PHOTONICS CONFERENCE (IPC), 2018,
[48]   Plasmonic Breathing and Edge Modes in Aluminum Nanotriangles [J].
Campos, Alfredo ;
Arbouet, Arnaud ;
Martin, Jerome ;
Gerard, Davy ;
Proust, Julien ;
Plain, Jerome ;
Kociak, Mathieu .
ACS PHOTONICS, 2017, 4 (05) :1257-1263
[49]   Nanowaveguides and couplers based on hybrid plasmonic modes [J].
Tian, Jie ;
Ma, Zhe ;
Li, Qiang ;
Song, Yi ;
Liu, Zhihong ;
Yang, Qing ;
Zha, Chaolin ;
Akerman, Johan ;
Tong, Limin ;
Qiu, Min .
APPLIED PHYSICS LETTERS, 2010, 97 (23)
[50]   Revealing the Hidden Plasmonic Modes of a Gold Nanocylinder [J].
Movsesyan, Artur ;
Baudrion, Anne-Laure ;
Adam, Pierre-Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (41) :23651-23658