The effects of bending on plasmonic modes in nanowires and planar structures

被引:3
作者
Bellido, Edson P. [2 ]
Bicket, Isobel C. [2 ,3 ]
Botton, Gianluigi A. [1 ]
机构
[1] Canadian Light Source, Saskatoon, SK, Canada
[2] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON, Canada
[3] McMaster Univ, Canadian Ctr Electron Microscopy, Hamilton, ON, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
antennas; coupling; EELS; hybridization; nanowires; plasmonics; ENERGY-LOSS SPECTROSCOPY; EDGE MODES; SURFACE; LIGHT; PROPAGATION; RESONANCES; RESOLUTION; MNPBEM; GOLD;
D O I
10.1515/nanoph-2021-0449
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we investigate the effects of bends on the surface plasmon resonances in nanowires (NWs) and isolated edges of planar structures using electron energy loss spectroscopy experiments and theoretical calculations. Previous work showed that the sharp bends in NWs do not affect their resonant modes. Here, we study previously overlooked effects and analyze systematically the evolution of resonant modes for several bending angles from 30 degrees to 180 degrees, showing that bending can have a significant effect on the plasmonic response of a nanostructure. In NWs, the modes can experience significant energy shifts that depend on the aspect ratio of the NW and can cause mode intersection and antinode bunching. We establish the relation between NW modes and edge modes and show that bending can even induce antinode splitting in edge modes. This work demonstrates that bends in plasmonic planar nanostructures can have a profound effect on their optical response and this must be accounted for in the design of optical devices.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 50 条
[21]   Study of resonant modes for sensing in a multimode planar plasmonic terahertz waveguide [J].
Dhriti, K. M. ;
Kumar, Gagan .
2019 WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2019,
[22]   Transdimensional epsilon-near-zero modes in planar plasmonic nanostructures [J].
Bondarev, Igor, V ;
Mousavi, Hamze ;
Shalaev, Vladimir M. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[23]   Plasmonic waveguide on metal nanowires with various symmetry breaking features [J].
Zhang, Lingjun ;
Jin, Qijian ;
Li, Guangxiang ;
Zheng, Jiangen ;
Yuan, Yuan ;
Liu, Anping ;
Yan, Sheng ;
Huang, Yingzhou .
OPTICS COMMUNICATIONS, 2019, 439 :171-175
[24]   Optical Control of Plasmonic Bloch Modes on Periodic Nanostructures [J].
Gjonaj, B. ;
Aulbach, J. ;
Johnson, P. M. ;
Mosk, A. P. ;
Kuipers, L. ;
Lagendijk, A. .
NANO LETTERS, 2012, 12 (02) :546-550
[25]   Metal-coated hollow nanowires for low-loss transportation of plasmonic modes with nanoscale mode confinement [J].
Su, Yalin ;
Zheng, Zheng ;
Bian, Yusheng ;
Liu, Lei ;
Zhao, Xin ;
Liu, Jiansheng ;
Zhou, Tao ;
Guo, Shize ;
Niu, Wei ;
Liu, Yulong ;
Zhu, Jinsong .
JOURNAL OF OPTICS, 2012, 14 (09)
[26]   Transition from Isolated to Collective Modes in Plasmonic Oligomers [J].
Hentschel, Mario ;
Saliba, Michael ;
Vogelgesang, Ralf ;
Giessen, Harald ;
Alivisatos, A. Paul ;
Liu, Na .
NANO LETTERS, 2010, 10 (07) :2721-2726
[27]   Hybridization and Dehybridization of Plasmonic Modes [J].
Movsesyan, Artur ;
Muravitskaya, Alina ;
Castilla, Marion ;
Kostcheev, Sergei ;
Proust, Julien ;
Plain, Jerome ;
Baudrion, Anne-Laure ;
Vincent, Remi ;
Adam, Pierre-Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (01) :724-731
[28]   Tuning the plasmonic behavior of metallic nanowires [J].
Krajcar, Robert ;
Denk, Richard ;
Zeppenfeld, Peter ;
Slepicka, Petr ;
Svorcik, Vaclav .
MATERIALS LETTERS, 2016, 165 :181-184
[29]   Modal and wavelength conversions in plasmonic nanowires [J].
Agreda, Adrian ;
Sharma, Deepak K. ;
des Francs, Gerard Colas ;
Kumar, G. V. Pavan ;
Bouhelier, Alexandre .
OPTICS EXPRESS, 2021, 29 (10) :15366-15381
[30]   Beam bending via plasmonic lenses [J].
Zhao, Yanhui ;
Lin, Sz-Chin Steven ;
Nawaz, Ahmad Ahsan ;
Kiraly, Brian ;
Hao, Qingzhen ;
Liu, Yanjun ;
Huang, Tony Jun .
OPTICS EXPRESS, 2010, 18 (22) :23458-23465