Automatic selection of frequency and time intervals for classification of EEG signals

被引:13
作者
Dalponte, M. [1 ,2 ]
Bovolo, F. [1 ]
Bruzzone, L. [1 ]
机构
[1] Univ Trent, Dept Informat & Commun Technol, I-38050 Trento, Italy
[2] Ctr Ecol Alpina, I-38040 Trento, Italy
关键词
5;
D O I
10.1049/el:20072428
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel technique is presented for the automatic selection of time and frequency intervals to be used in feature extraction on multidimensional signals acquired by an electroencephalogram (EEG). This technique is completely automatic, adaptive (task independent), and does not require any specific prior domain knowledge. Experimental results obtained by integrating the proposed technique in a system for brain computer interface (BCI) confirm its effectiveness.
引用
收藏
页码:1406 / 1408
页数:3
相关论文
共 4 条
[1]  
[Anonymous], 1999, The Nature Statist. Learn. Theory
[2]   An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection [J].
Bruzzone, L ;
Roli, F ;
Serpico, SB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (06) :1318-1321
[3]   Spatial filter selection for EEG-based communication [J].
McFarland, DJ ;
McCane, LM ;
David, SV ;
Wolpaw, JR .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 103 (03) :386-394
[4]   Common spatial subspace decomposition applied to analysis of brain responses under multiple task conditions: a simulation study [J].
Wang, YH ;
Berg, P ;
Scherg, M .
CLINICAL NEUROPHYSIOLOGY, 1999, 110 (04) :604-614