A class of hyper-bent functions and Kloosterman sums

被引:1
作者
Tang, Chunming [1 ]
Qi, Yanfeng [2 ]
机构
[1] China West Normal Univ, Sch Math & Informat, Nanchong 637002, Sichuan, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2017年 / 9卷 / 05期
基金
中国国家自然科学基金;
关键词
Bent functions; Hyper-bent functions; Walsh-Hadmard trasform; Dickson polynomials; Kloosterman sums;
D O I
10.1007/s12095-016-0207-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is devoted to the characterization of hyper-bent functions. Several classes of hyper-bent functions have been studied, such as Charpin and Gong's family Sigma(r is an element of R) Tr-1(n) (a(r)x(r(2m -1))) and Mesnager's family Sigma(r is an element of R) Tr-1(n) (a(r)x(r(2m -1))) + Tr-1(2) (bx(2n -1/3)). In this paper, we generalize these results by considering the following class of Boolean functions over F-2n : Sigma(r is an element of R) Sigma(2)(i=0) T r(1)(n) (a(r,i)x(r(2m-1)+2n-1/3i)) + T r(1)(2) (bx (2n-1/3)), where n = 2m, m is odd, b is an element of F-4, and a(r,i) is an element of F-2n. With the restriction of a(r,i) is an element of F-2m, we present a characterization of hyper-bentness of these functions in terms of crucial exponential sums. For some special cases, we provide explicit characterizations for some hyper-bent functions in terms of Kloosterman sums and cubic sums. Finally, we explain how our results on binomial, trinomial and quadrinomial hyper-bent functions can be generalized to the general case where the coefficients a(r,i) belong to the whole field F-2n.
引用
收藏
页码:647 / 664
页数:18
相关论文
共 35 条
[1]  
[Anonymous], 1974, THESIS
[2]   A new class of monomial bent functions [J].
Canteaut, Anne ;
Charpin, Pascale ;
Kyureghyan, Gohar M. .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) :221-241
[3]   Hyper-bent functions and cyclic codes [J].
Carlet, C ;
Gaborit, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) :466-482
[4]  
Carlet C., 2010, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, P257, DOI [10.1017/CBO9780511780448.011, DOI 10.1017/CBO9780511780448.011]
[5]   EXPLICIT EVALUATION OF CERTAIN EXPONENTIAL SUMS [J].
CARLITZ, L .
MATHEMATICA SCANDINAVICA, 1979, 44 (01) :5-16
[6]   Hyperbent functions, Kloosterman sums, and Dickson polynomials [J].
Charpin, Pascale ;
Gong, Guang .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) :4230-4238
[7]   Cubic monomial bent functions:: A subclass of M [J].
Charpin, Pascale ;
Kyureghyan, Gohar M. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) :650-665
[8]   The divisibility modulo 24 of Kloosterman sums on GF (2m), m odd [J].
Charpin, Pascale ;
Helleseth, Tor ;
Zinoviev, Victor .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (02) :322-338
[9]   New cyclic difference sets with Singer parameters [J].
Dillon, JF ;
Dobbertin, H .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (03) :342-389
[10]   Construction of bent functions via Niho power functions [J].
Dobbertin, Hans ;
Leander, Gregor ;
Canteaut, Anne ;
Carlet, Claude ;
Felke, Patrick ;
Gaborit, Philippe .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (05) :779-798