Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation

被引:62
|
作者
Gibson, Benjamin C. [1 ]
Sanguinetti, Joseph L. [1 ,2 ]
Badran, Bashar W. [1 ,2 ,3 ,4 ]
Yu, Alfred B. [2 ]
Klein, Evan P. [1 ]
Abbott, Christopher C. [5 ]
Hansberger, Jeffrey T. [6 ]
Clark, Vincent P. [1 ,7 ,8 ]
机构
[1] Univ New Mexico, Dept Psychol, Psychol Clin Neurosci Ctr, Albuquerque, NM 87131 USA
[2] US Army Res Lab, Aberdeen Proving Ground, MD USA
[3] CUNY City Coll, Dept Biomed Engn, New York, NY USA
[4] Med Univ South Carolina, Dept Psychiat, Brain Stimulat Lab, Charleston, SC USA
[5] Univ New Mexico, Sch Med, Dept Psychiat, Albuquerque, NM 87131 USA
[6] US Army Res Lab, Redstone Arsenal, AL USA
[7] Univ New Mexico, Sch Med, Dept Neurosci, Albuquerque, NM 87131 USA
[8] Mind Res Network & LBERI, Albuquerque, NM 87106 USA
来源
FRONTIERS IN NEUROLOGY | 2018年 / 9卷
关键词
brain-stimulation; magnetic stimulation; excitability; neuroplasticity; excitation; pulsed ultrasound; NONINVASIVE BRAIN-STIMULATION; FOCUSED ULTRASOUND; MAGNETIC STIMULATION; INTERINDIVIDUAL VARIABILITY; CORTICAL PLASTICITY; THERAPEUTIC APPLICATIONS; EVOKED-POTENTIALS; LOW-INTENSITY; SOUND; TDCS;
D O I
10.3389/fneur.2018.01007
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS is currently unknown. Objective: We aimed to examine the effects of a commercial diagnostic tUS device using an imaging protocol on cortical excitability. We hypothesized that imaging tUS applied to motor cortex could induce changes in cortical excitability as measured using a transcranial magnetic stimulation (TMS) motor evoked potential (MEP) paradigm. Methods: Forty-three subjects were assigned to receive either verum (n = 21) or sham (n = 22) diagnostic tUS in a single-blind design. Baseline motor cortex excitability was measured using MEPs elicited by TMS. Diagnostic tUS was subsequently administered to the same cortical area for 2 min, immediately followed by repeated post-stimulation MEPs recorded up to 16 min post-stimulation. Results: Verum tUS increased excitability in the motor cortex (from baseline) by 33.7% immediately following tUS (p = 0.009), and 32.4% (p = 0.047) 6 min later, with excitability no longer significantly different from baseline by 11 min post-stimulation. By contrast, subjects receiving sham tUS showed no significant changes in MEP amplitude. Conclusion: These findings demonstrate that tUS delivered via a commercially available diagnostic imaging ultrasound system transiently increases excitability in the motor cortex as measured by MEPs. Diagnostic tUS devices are currently used for internal imaging in many health care settings, and the present results suggest that these same devices may also offer a promising tool for noninvasively modulating activity in the central nervous system. Further studies exploring the use of diagnostic imaging devices for neuromodulation are warranted.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Transcranial ultrasound stimulation of the human motor cortex
    Zhang, Yi
    Ren, Liyuan
    Liu, Kai
    Tong, Shanbao
    Yuan, Ti-Fei
    Sun, Junfeng
    ISCIENCE, 2021, 24 (12)
  • [2] Effects of transcranial direct current stimulation on cortex modulation by stimulation of the primary motor cortex and parietal cortex in humans
    Bashir, Shahid
    Aisha, Dowihi
    Hamza, Ali
    Al-Hussain, Fawaz
    Yoo, Woo-Kyoung
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2021, 131 (11) : 1107 - 1114
  • [3] Comparative Study of Transcranial Magneto-Acoustic Stimulation and Transcranial Ultrasound Stimulation of Motor Cortex
    Wang, Huiqin
    Zhou, Xiaoqing
    Cui, Dong
    Liu, Ruixu
    Tan, Ruxin
    Wang, Xin
    Liu, Zhipeng
    Yin, Tao
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2019, 13
  • [4] Transcranial focused ultrasound stimulation of human primary visual cortex
    Lee, Wonhye
    Kim, Hyun-Chul
    Jung, Yujin
    Chung, Yong An
    Song, In-Uk
    Lee, Jong-Hwan
    Yoo, Seung-Schik
    SCIENTIFIC REPORTS, 2016, 6
  • [5] Anodal Transcranial Direct Current Stimulation over the Vertex Enhances Leg Motor Cortex Excitability Bilaterally
    Ghosh, Soumya
    Hathorn, David
    Eisenhauer, Jennifer
    Dixon, Jesse
    Cooper, Ian D.
    BRAIN SCIENCES, 2019, 9 (05)
  • [6] Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability
    Chaieb, Leila
    Antal, Andrea
    Paulus, Walter
    RESTORATIVE NEUROLOGY AND NEUROSCIENCE, 2011, 29 (03) : 167 - 175
  • [7] Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability
    Tremblay, Sara
    Larochelle-Brunet, Felix
    Lafleur, Louis-Philippe
    El Mouderrib, Sofia
    Lepage, Jean-Francois
    Theoret, Hugo
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2016, 44 (05) : 2184 - 2190
  • [8] Transcranial ultrasound stimulation modulates the interhemispheric balance of excitability in human motor cortex
    Ren, Liyuan
    Zhai, Zhaolin
    Xiang, Qiong
    Zhuo, Kaiming
    Zhang, Suzhen
    Zhang, Yi
    Jiao, Xiong
    Tong, Shanbao
    Liu, Dengtang
    Sun, Junfeng
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [9] Induction of Human Motor Cortex Plasticity by Theta Burst Transcranial Ultrasound Stimulation
    Zeng, Ke
    Darmani, Ghazaleh
    Fomenko, Anton
    Xia, Xue
    Tran, Stephanie
    Nankoo, Jean-Francois
    Oghli, Yazan Shamli
    Wang, Yanqiu
    Lozano, Andres M.
    Chen, Robert
    ANNALS OF NEUROLOGY, 2022, 91 (02) : 238 - 252
  • [10] Commentary: Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability
    Hanley, Claire J.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2016, 10