共 50 条
Synthesis of Silver Nanocomposite Based on Carboxymethyl Cellulose: Antibacterial, Antifungal and Anticancer Activities
被引:107
|作者:
Salem, Salem S.
[1
]
Hashem, Amr H.
[1
]
Sallam, Al-Aliaa M.
[2
]
Doghish, Ahmed S.
[3
,4
]
Al-Askar, Abdulaziz A.
[5
]
Arishi, Amr A.
[6
]
Shehabeldine, Amr M.
[1
]
机构:
[1] Al Azhar Univ, Fac Sci, Bot & Microbiol Dept, Cairo 11884, Egypt
[2] Ain Shams Univ, Fac Pharm, Biochem Dept, Cairo 11566, Egypt
[3] Badr Univ Cairo BUC, Fac Pharm, Dept Biochem, Cairo 11829, Egypt
[4] Al Azhar Univ, Biochem & Mol Biol Dept, Fac Pharm Boys, Cairo 11231, Egypt
[5] King Saud Univ, Fac Sci, Dept Bot & Microbiol, Riyadh 12372, Saudi Arabia
[6] Univ Western Australia, Sch Mol Sci, Perth, WA 6009, Australia
来源:
关键词:
silver nanoparticles;
carboxymethyl cellulose;
antimicrobial;
anticancer;
POTENTIAL VEGFR-2 INHIBITORS;
GRAPHENE OXIDE;
NANOPARTICLES;
APOPTOSIS;
DERIVATIVES;
DESIGN;
CELLS;
SUSCEPTIBILITY;
ANTIBIOFILM;
MELANOMA;
D O I:
10.3390/polym14163352
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
Traditional cancer treatments include surgery, radiation, and chemotherapy. According to medical sources, chemotherapy is still the primary method for curing or treating cancer today and has been a major contributor to the recent decline in cancer mortality. Nanocomposites based on polymers and metal nanoparticles have recently received the attention of researchers. In the current study, a nanocomposite was fabricated based on carboxymethyl cellulose and silver nanoparticles (CMC-AgNPs) and their antibacterial, antifungal, and anticancer activities were evaluated. The antibacterial results revealed that CMC-AgNPs have promising antibacterial activity against Gram-negative (Klebsiella oxytoca and Escherichia coli) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus). Moreover, CMC-AgNPs exhibited antifungal activity against filamentous fungi such as Aspergillus fumigatus, A. niger, and A. terreus. Concerning the HepG2 hepatocellular cancer cell line, the lowest IC50 values (7.9 +/- 0.41 mu g/mL) were recorded for CMC-AgNPs, suggesting a strong cytotoxic effect on liver cancer cells. As a result, our findings suggest that the antitumor effect of these CMC-Ag nanoparticles is due to the induction of apoptosis and necrosis in hepatic cancer cells via increased caspase-8 and -9 activities and diminished levels of VEGFR-2. In conclusion, CMC-AgNPs exhibited antibacterial, antifungal, and anticancer activities, which can be used in the pharmaceutical and medical fields.
引用
收藏
页数:16
相关论文