The parity operator in quantum optical metrology

被引:120
作者
Gerry, Christopher C. [1 ]
Mimih, Jihane [1 ]
机构
[1] CUNY, Dept Phys & Astron, Lehman Coll, Bronx, NY 10468 USA
基金
美国国家科学基金会;
关键词
quantum metrology; parity operator; quantum optical interferometry; PHOTON-NUMBER; BEAM SPLITTER; NONDEMOLITION MEASUREMENT; ENTANGLED STATE; NOISE; INTERFEROMETER; INTERFERENCE; PERFORMANCE; STATISTICS; LIGHT;
D O I
10.1080/00107514.2010.509995
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photon number states are assigned a parity of +1 if their photon number is even and a parity of -1 if odd. The parity operator, which is minus one to the power of the photon number operator, is a Hermitian operator and thus a quantum mechanical observable although it has no classical analogue, the concept being meaningless in the context of classical light waves. In this paper we review work on the application of the parity operator to the problem of quantum metrology for the detection of small phase shifts with quantum optical interferometry using highly entangled field states such as the so-called N00N states, and states obtained by injecting twin Fock states into a beam splitter. With such states and with the performance of parity measurements on one of the output beams of the interferometer, one can breach the standard quantum limit, or shot-noise limit, of sensitivity down to the Heisenberg limit, the greatest degree of phase sensitivity allowed by quantum mechanics for linear phase shifts. Heisenberg limit sensitivities are expected to eventually play an important role in attempts to detect gravitational waves in interferometric detection systems such as LIGO and VIRGO.
引用
收藏
页码:497 / 511
页数:15
相关论文
共 76 条
[1]   LIGO: the Laser Interferometer Gravitational-Wave Observatory [J].
Abbott, B. P. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballmer, S. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Behnke, B. ;
Benacquista, M. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, J. K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Bridges, D. O. .
REPORTS ON PROGRESS IN PHYSICS, 2009, 72 (07)
[2]  
Achilles D, 2004, J MOD OPTIC, V51, P1499, DOI [10.1080/09500340408235288, 10.1080/09500340410001670875]
[4]   Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit [J].
Anisimov, Petr M. ;
Raterman, Gretchen M. ;
Chiruvelli, Aravind ;
Plick, William N. ;
Huver, Sean D. ;
Lee, Hwang ;
Dowling, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[5]  
[Anonymous], 2005, Introductory Quantum Optics
[6]   Photon counting with a loop detector [J].
Banaszek, K ;
Walmsley, IA .
OPTICS LETTERS, 2003, 28 (01) :52-54
[7]   Testing quantum nonlocality in phase space [J].
Banaszek, K ;
Wódkiewicz, K .
PHYSICAL REVIEW LETTERS, 1999, 82 (10) :2009-2013
[8]  
Bartusiak M., 2000, EINSTEINS UNFINISHED
[9]  
Bell JS., 1987, Speakable and unspeakable in quantum mechanics
[10]  
Bevington P. R., 1969, DATA REDUCTION ERROR