Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations

被引:18
作者
Burgos, C. [1 ]
Cortes, J. -C. [1 ]
Villafuerte, L. [2 ,3 ]
Villanueva, R. -J. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Autonoma Chiapas, Fac Ciencias Fis & Matemat, Tuxtla Gutierrez, Chiapas, Mexico
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Random mean square Riemann-Liouville integral; Random mean square Caputo derivative; Random fractional linear differential equation; Random Frobenius method; POLYNOMIAL CHAOS; ORDER;
D O I
10.1016/j.chaos.2017.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper extends both the deterministic fractional Riemann-Liouville integral and the Caputo fractional derivative to the random framework using the mean square random calculus. Characterizations and sufficient conditions to guarantee the existence of both fractional random operators are given. Assuming mild conditions on the random input parameters (initial condition, forcing term and diffusion coefficient), the solution of the general random fractional linear differential equation, whose fractional order of the derivative is a. [0, 1], is constructed. The approach is based on a mean square chain rule, recently established, together with the random Frobenius method. Closed formulae to construct reliable approximations for the mean and the covariance of the solution stochastic process are also given. Several examples illustrating the theoretical results are included. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 28 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], PROBABILITY RANDOM P
[3]  
[Anonymous], [No title captured]
[4]  
Arnold L, 1992, STOCHASTIC DIFFERENT
[5]   DYNAMICS OF A FRACTIONAL DERIVATIVE TYPE OF A VISCOELASTIC ROD WITH RANDOM EXCITATION [J].
Atanackovic, Teodor ;
Nedeljkov, Marko ;
Pilipovic, Stevan ;
Rajter-Ciric, Danijela .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) :1232-1251
[6]  
Cai G., 2016, Elements of Stochastic Dynamics
[7]   Solving the random Legendre differential equation: Mean square power series solution and its statistical functions [J].
Calbo, G. ;
Cortes, J. -C. ;
Jodar, L. ;
Villafuerte, L. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) :2782-2792
[8]   A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation [J].
Cortes, J. -C. ;
Villafuerte, L. ;
Burgos, C. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
[9]   Random Airy type differential equations: Mean square exact and numerical solutions [J].
Cortes, J. -C. ;
Jodar, L. ;
Camacho, F. ;
Villafuerte, L. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) :1237-1244
[10]   Analytic-numerical approximating processes of diffusion equation with data uncertainty [J].
Cortés, JC ;
Sevilla-Peris, P ;
Jódar, L .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (7-8) :1255-1266