Determining Liouvillian first integrals for dynamical systems in the plane

被引:7
作者
Avellar, J.
Duarte, L. G. S.
Duarte, S. E. S.
da Mota, L. A. C. P. [1 ]
机构
[1] Univ Estado Rio De Janeiro, Inst Fis, Dept Fis Teor, BR-20559900 Rio De Janeiro, Brazil
[2] Fdn Apoio Escola Tecn, ETE Juscelino Kubitschek, BR-21311280 Rio De Janeiro, Brazil
[3] CFET, BR-20537200 Rio De Janeiro, Brazil
关键词
Liouvillian functions; first integrals; dynamical systems in the plane; first order ordinary differential equations; computer algebra; Prelle-Singer (PS);
D O I
10.1016/j.cpc.2007.05.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Here we present/implement a semi-algorithm to find Liouvillian first integrals of dynamical systems in the plane. The algorithm is based on a Darboux-type procedure to find the integrating factor for the system. Since the particular form of such systems allows reducing it to a single rational first order ordinary differential equation (rational first order ODE), the Lsolver package presents a set of software routines in Maple for dealing with rational first order ODES. The package present commands permitting research investigations of some algebraic properties of the system that is being studied.
引用
收藏
页码:584 / 596
页数:13
相关论文
共 18 条
[1]   Integrating first-order differential equations with Liouvillian solutions via quadratures: a semi-algorithmic method [J].
Avellar, J ;
Duarte, LGS ;
Duarte, SES ;
da Mota, LACP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (02) :327-332
[2]   Computer algebra solving of second order ODEs using symmetry methods [J].
Cheb-Terrab, ES ;
Duarte, LGS ;
da Mota, LACP .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (01) :90-114
[3]   Computer algebra solving of first order ODEs using symmetry methods [J].
ChebTerrab, ES ;
Duarte, LGS ;
daMota, LACP .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 101 (03) :254-268
[4]  
CHRISTOPHER C, 1999, ELECTRON J DIFFER EQ, V49, P7
[5]  
Christopher C., 2000, ANN DIFFERENTIAL EQU, V14, P5
[6]  
DARBOUX G, 1978, B SCI MATH 2, V2, P6096
[7]  
DAVENPORT J, 1993, COMPUTER ALGEBRA SYS
[8]   Analysing the structure of the integrating factors for first-order ordinary differential equations with Liouvillian functions in the solution [J].
Duarte, LGS ;
Duarte, SES ;
da Mota, LACP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (04) :1001-1006
[9]   A method to tackle first-order ordinary differential equations with Liouvillian functions in the solution [J].
Duarte, LGS ;
Duarte, SES ;
da Mota, LACP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (17) :3899-3910
[10]   An extension of the Prelle-Singer method and a Maple implementation [J].
Duarte, LGS ;
Duarte, SES ;
da Mota, LACP ;
Skea, JEF .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 144 (01) :46-62