Matrix Sign Function Methods for Solving Projected Generalized Continuous-Time Sylvester Equations

被引:9
作者
Lin, Yiqin [1 ]
Bao, Liang [2 ]
Wei, Yimin [3 ]
机构
[1] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Yongzhou 425100, Peoples R China
[2] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[3] Fudan Univ, Inst Math, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
C-stable; matrix pencil; matrix sign function; projected generalized Sylvester equation; ALGEBRAIC RICCATI EQUATION; MODEL-REDUCTION; NUMERICAL-SOLUTION;
D O I
10.1109/TAC.2010.2064590
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this technical note, we investigate the numerical solution of the projected generalized Sylvester equations via a matrix sign function method. Such equations arise in stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. Unlike the classical matrix sign function iteration, we propose a modification of the matrix sign function method that converges quadratically for pencils of arbitrary index. Numerical experiments report the effectiveness of the modified method.
引用
收藏
页码:2629 / 2634
页数:6
相关论文
共 29 条
[1]   GENERALIZED LYAPUNOV EQUATION AND FACTORIZATION OF MATRIX POLYNOMIALS [J].
ALIEV, FA ;
LARIN, VB .
SYSTEMS & CONTROL LETTERS, 1993, 21 (06) :485-491
[2]  
Anderson B.D., 2007, OPTIMAL CONTROL LINE
[3]  
[Anonymous], 1959, The Theory of Matrices
[4]   Using the matrix sign function to compute invariant subspaces [J].
Bai, ZJ ;
Demmel, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) :205-225
[5]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[6]   Solving stable generalized Lyapunov equations with the matrix sign function [J].
Benner, P ;
Quintana-Ortí, ES .
NUMERICAL ALGORITHMS, 1999, 20 (01) :75-100
[7]  
BENNER P, 1997, CONTRIBUTIONS NUMERI
[8]   Solving stable Sylvester equations via rational iterative schemes [J].
Benner, Peter ;
Quintana-Orti, Enrique S. ;
Quintana-Orti, Gregorio .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 28 (01) :51-83
[10]   A GENERALIZATION OF THE MATRIX-SIGN-FUNCTION SOLUTION FOR ALGEBRAIC RICCATI-EQUATIONS [J].
GARDINER, JD ;
LAUB, AJ .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (03) :823-832