Hyalograft® C:: Hyaluronan-based scaffolds in tissue-engineered cartilage

被引:52
|
作者
Tognana, Enrico [1 ]
Borrione, Anna [1 ]
De Luca, Claudio [1 ]
Pavesio, Alessandra [1 ]
机构
[1] Fidia Adv Biopolymers, IT-35031 Abano Terme, Italy
关键词
tissue engineering; cartilage; hyaluronan; HYAFF (R); Hyalograft (R) C; AUTOLOGOUS CHONDROCYTE TRANSPLANTATION; FOLLOW-UP; OSTEOCHONDRAL DEFECTS; IN-VITRO; ACID; KNEE; REPAIR; POLYMERS; CELLS; BONE;
D O I
10.1159/000102539
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Articular cartilage injuries have poor reparative capability and, if left untreated, may progress to osteo-arthritis. Unsatisfactory results with conventional treatment methods have prompted the development of innovative solutions including the use of cell transplantations, with or without a supporting scaffold. Tissue engineering combines cells, scaffolds and bio-active factors, which represents one of the most promising approaches for the restoration of damaged tissues. Available today, hyaluronan, also known as hyaluronic acid, is a natural glycosaminoglycan present in all soft tissues of higher organisms and in particularly high concentrations in the extracellular matrix of articular cartilage and in the mesenchyme during embryonic development in which it plays a number of biological functions, not only as a structural component but as an informational molecule as well. Moreover, hyaluronan can be manufactured in a variety of physical forms including hydrogels, sponges, fibres and fabrics allowing to develop a variety of hyaluronan-based scaffolds. This review will present both theoretical and experimental evidences that led to the development of Hyalograft((R)) C, an exploitation of hyaluronic acid technology and a tissue engineering approach for the resolution of articular cartilage defects. Copyright (c) 2007 S. Karger AG, Basel.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [21] Tissue engineered cartilage approach with Hyalograft® C in complex and salvage procedures associated with unloading osteotomy
    Zanasi, S
    PROCEEDINGS OF THE 5TH SYMPOSIUM OF THE INTERNATIONAL CARTILAGE REPAIR SOCIETY - ICRS, 2004, : 207 - 211
  • [22] Bioreactor development for tissue-engineered cartilage
    Wu, F
    Dunkelman, N
    Peterson, A
    Davisson, T
    De la Torre, R
    Jain, D
    BIOARTIFICIAL ORGANS II: TECHNOLOGY, MEDICINE, AND MATERIALS, 1999, 875 : 405 - 411
  • [23] Biochemical Properties of Tissue-Engineered Cartilage
    Pappa, Andrew K.
    Caballero, Montserrat
    Dennis, Robert G.
    Skancke, Matthew D.
    Narayan, Roger J.
    Dahl, John P.
    van Aalst, John A.
    JOURNAL OF CRANIOFACIAL SURGERY, 2014, 25 (01) : 111 - 115
  • [24] Researchers Develop Tissue-Engineered Cartilage
    Hampton, Tracy
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (09): : 917 - 917
  • [25] Biological aspects of tissue-engineered cartilage
    Kazuto Hoshi
    Yuko Fujihara
    Takanori Yamawaki
    Motohiro Harai
    Yukiyo Asawa
    Atsuhiko Hikita
    Histochemistry and Cell Biology, 2018, 149 : 375 - 381
  • [26] TISSUE-ENGINEERED GROWTH OF BONE AND CARTILAGE
    VACANTI, CA
    KIM, W
    UPTON, J
    VACANTI, MP
    MOONEY, D
    SCHLOO, B
    VACANTI, JP
    TRANSPLANTATION PROCEEDINGS, 1993, 25 (01) : 1019 - 1021
  • [27] Biological aspects of tissue-engineered cartilage
    Hoshi, Kazuto
    Fujihara, Yuko
    Yamawaki, Takanori
    Harai, Motohiro
    Asawa, Yukiyo
    Hikita, Atsuhiko
    HISTOCHEMISTRY AND CELL BIOLOGY, 2018, 149 (04) : 375 - 381
  • [28] Internal support of tissue-engineered cartilage
    Arévalo-Silva, CA
    Eavey, RD
    Cao, YL
    Vacanti, M
    Weng, YL
    Vacanti, CA
    ARCHIVES OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2000, 126 (12) : 1448 - 1452
  • [29] Compressive properties of tissue-engineered cartilage
    Horkay, F
    Horkayne-Szakaly, I
    Basser, PJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U579 - U580
  • [30] Glycogen storage in tissue-engineered cartilage
    Suits, Jocelyne M. T.
    Khan, Aasma A.
    Waldman, Stephen D.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2008, 2 (06) : 340 - 346