Multi-dimensional sequential testing and detection

被引:7
作者
Ekstrom, Erik [1 ]
Wang, Yuqiong [1 ]
机构
[1] Uppsala Univ, Dept Math, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Sequential analysis; optimal stopping; Bayesian quickest detection problem; INVESTMENT; ROBUSTNESS; TIME;
D O I
10.1080/17442508.2021.1993852
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study extensions to higher dimensions of the classical Bayesian sequential testing and detection problems for Brownian motion. In the main result, we show that, for a large class of problem formulations, the cost function is unilaterally concave. This concavity result is then used to deduce structural properties for the continuation and stopping regions in specific examples.
引用
收藏
页码:789 / 806
页数:18
相关论文
共 20 条
[1]   Quickest detection of a minimum of two Poisson disorder times [J].
Bayraktar, Erhan ;
Poor, H. Vincent .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) :308-331
[2]   Adaptive Poisson disorder problem [J].
Bayraktar, Erhan ;
Dayanik, Savas ;
Karatzas, Ioannis .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) :1190-1261
[3]   Multisource Bayesian sequential change detection [J].
Dayanik, Savas ;
Poor, H. Vincent ;
Sezer, Semih O. .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (02) :552-590
[4]   Optimal Boundary Surface for Irreversible Investment with Stochastic Costs [J].
De Angelis, Tiziano ;
Federico, Salvatore ;
Ferrari, Giorgio .
MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (04) :1135-1161
[5]   Superreplication of options on several underlying assets [J].
Ekström, E ;
Janson, S ;
Tysk, J .
JOURNAL OF APPLIED PROBABILITY, 2005, 42 (01) :27-38
[6]   Monotonicity and robustness in Wiener disorder detection [J].
Ekstrom, Erik ;
Vaicenavicius, Juozas .
SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2019, 38 (01) :57-68
[7]   BAYESIAN SEQUENTIAL TESTING OF THE DRIFT OF A BROWNIAN MOTION [J].
Ekstrom, Erik ;
Vaicenavicius, Juozas .
ESAIM-PROBABILITY AND STATISTICS, 2015, 19 :626-648
[8]  
El Karoui N, 1998, MATH FINANC, V8, P93
[9]   OPTIMAL REAL-TIME DETECTION OF A DRIFTING BROWNIAN COORDINATE [J].
Ernst, P. A. ;
Peskir, G. ;
Zhou, Q. .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (03) :1032-1065
[10]   Preservation of convexity of solutions to parabolic equations [J].
Janson, S ;
Tysk, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (01) :182-226