Scanning probe block copolymer lithography

被引:127
作者
Chai, Jinan [1 ,2 ]
Huo, Fengwei [1 ,2 ]
Zheng, Zijian [1 ,2 ]
Giam, Louise R. [2 ,3 ]
Shim, Wooyoung [2 ,3 ]
Mirkin, Chad A. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
scanning probe lithography; block copolymer micelles; single particle synthesis; nanopatterning; GOLD NANOPARTICLES; ARRAYS; NANOLITHOGRAPHY; DOMAINS; OXIDE); GROWTH; FILMS; AU;
D O I
10.1073/pnas.1014892107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Integration of individual nanoparticles into desired spatial arrangements over large areas is a prerequisite for exploiting their unique electrical, optical, and chemical properties. However, positioning single sub-10-nm nanoparticles in a specific location individually on a substrate remains challenging. Herein we have developed a unique approach, termed scanning probe block copolymer lithography, which enables one to control the growth and position of individual nanoparticles in situ. This technique relies on either dip-pen nanolithography (DPN) or polymer pen lithography (PPL) to transfer phase-separating block copolymer inks in the form of 100 or more nanometer features on an underlying substrate. Reduction of the metal ions via plasma results in the high-yield formation of single crystal nanoparticles per block copolymer feature. Because the size of each feature controls the number of metal atoms within it, the DPN or PPL step can be used to control precisely the size of each nanocrystal down to 4.8 +/- 0.2 nm.
引用
收藏
页码:20202 / 20206
页数:5
相关论文
共 32 条
  • [1] Selective growth of cobalt nanoclusters in domains of block copolymer films
    Abes, JI
    Cohen, RE
    Ross, CA
    [J]. CHEMISTRY OF MATERIALS, 2003, 15 (05) : 1125 - 1131
  • [2] Silver Nanoparticles with Broad Multiband Linear Optical Absorption
    Bakr, Osman M.
    Amendola, Vincenzo
    Aikens, Christine M.
    Wenseleers, Wim
    Li, Rui
    Dal Negro, Luca
    Schatz, George C.
    Stellacci, Francesco
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (32) : 5921 - 5926
  • [3] Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns
    Bang, Joona
    Jeong, Unyong
    Ryu, Du Yeol
    Russell, Thomas P.
    Hawker, Craig J.
    [J]. ADVANCED MATERIALS, 2009, 21 (47) : 4769 - 4792
  • [4] Block copolymers - Designer soft materials
    Bates, FS
    Fredrickson, GH
    [J]. PHYSICS TODAY, 1999, 52 (02) : 32 - 38
  • [5] Block-copolymer assisted synthesis of arrays of metal nanoparticles and their catalytic activities for the growth of SWNTs
    Bhaviripudi, Sreekar
    Reina, Alfonso
    Qi, Jifa
    Kong, Jing
    Belcher, Angela M.
    [J]. NANOTECHNOLOGY, 2006, 17 (20) : 5080 - 5086
  • [6] Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates
    Bita, Ion
    Yang, Joel K. W.
    Jung, Yeon Sik
    Ross, Caroline A.
    Thomas, Edwin L.
    Berggren, Karl K.
    [J]. SCIENCE, 2008, 321 (5891) : 939 - 943
  • [7] Polymer self-assembly as a novel extension to optical lithography
    Black, Charles T.
    [J]. ACS NANO, 2007, 1 (03) : 147 - 150
  • [8] Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds.: Micelle characteristics and metal nanoparticle formation
    Bronstein, LH
    Sidorov, SN
    Valetsky, PM
    Hartmann, J
    Cölfen, H
    Antonietti, M
    [J]. LANGMUIR, 1999, 15 (19) : 6256 - 6262
  • [9] Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires
    Chai, Jinan
    Buriak, Jillian M.
    [J]. ACS NANO, 2008, 2 (03) : 489 - 501
  • [10] Assembly of aligned linear metallic patterns on silicon
    Chai, Jinan
    Wang, Dong
    Fan, Xiangning
    Buriak, Jillian M.
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (08) : 500 - 506