Diffusion MRI and Silver Standard Masks to Improve CNN-based Thalamus Segmentation

被引:4
作者
Pinheiro, G. R. [1 ]
Brusini, L. [2 ]
Bajrami, A. [3 ]
Pizzini, F. B. [4 ]
Calabrese, M. [3 ]
Reis, F. [5 ]
Appenzeller, S. [5 ]
Menegaz, G. [2 ]
Rittner, L. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Campinas, SP, Brazil
[2] Univ Verona, Dept Comp Sci, Verona, Italy
[3] Univ Verona, Dept Neurosci Biomed & Movement Sci, Neurol, Verona, Italy
[4] Univ Verona, Dept Diagnost & Publ Hlth, Radiol, Verona, Italy
[5] Univ Estadual Campinas, Sch Med Sci, Rheumatol, Campinas, SP, Brazil
来源
MEDICAL IMAGING 2021: IMAGE PROCESSING | 2021年 / 11596卷
基金
巴西圣保罗研究基金会;
关键词
Thalamus segmentation; Diffusion MRI; Silver-standard; Deep Learning; VALIDATION;
D O I
10.1117/12.2581895
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The thalamus is an internal structure of the brain whose changes are related to diseases such as multiple sclerosis and Parkinson's disease. Thus, the thalamus segmentation is an important step in studies and applications related to these disorders, for example, for shape measuring and surgical planning. The most used software and tools for brain structures segmentation employ atlas-based algorithms that usually require long processing times and sometimes lead to inaccurate results on sub-cortical structures. New methods, that minimize those problems, using deep learning for segmenting brain structures have been recently proposed. However, for some structures such as the thalamus, these methods still tend to have unsatisfactory results since they rely only on T1w images, where the contrast can be low or absent. Aiming to overcome these issues, we proposed a Convolutional Neural Network (CNN) trained with multi-modal data (structural and diffusion MRI) and the use of silver standard masks created from multiple automatic segmentations. Results on a subset of 190 subjects from the Human Connectome Project (HCP) showed an improvement in segmentation quality, confirming the effectiveness of diffusion data in differentiating tissues due to measured micro-structural properties.
引用
收藏
页数:7
相关论文
共 20 条
  • [1] ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03): : 247 - 254
  • [2] A surface-in gradient of thalamic damage evolves in pediatric multiple sclerosis
    Fadda, Giulia
    Brown, Robert A.
    Magliozzi, Roberta
    Aubert-Broche, Berengere
    O'Mahony, Julia
    Shinohara, Russell T.
    Banwell, Brenda
    Marrie, Ruth Ann
    Yeh, E. Ann
    Collins, D. Louis
    Arnold, Douglas L.
    Bar-Or, Amit
    [J]. ANNALS OF NEUROLOGY, 2019, 85 (03) : 340 - 351
  • [3] FreeSurfer
    Fischl, Bruce
    [J]. NEUROIMAGE, 2012, 62 (02) : 774 - 781
  • [4] Dipy, a library for the analysis of diffusion MRI data
    Garyfallidis, Eleftherios
    Brett, Matthew
    Amirbekian, Bagrat
    Rokem, Ariel
    van der Walt, Stefan
    Descoteaux, Maxime
    Nimmo-Smith, Ian
    [J]. FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [5] Thalamus segmentation using multi-modal feature classification: Validation and pilot study of an age-matched cohort
    Glaister, Jeffrey
    Carass, Aaron
    NessAiver, Tziona
    Stough, Joshua V.
    Saidha, Shiv
    Calabresi, Peter A.
    Prince, Jerry L.
    [J]. NEUROIMAGE, 2017, 158 : 430 - 440
  • [6] The minimal preprocessing pipelines for the Human Connectome Project
    Glasser, Matthew F.
    Sotiropoulos, Stamatios N.
    Wilson, J. Anthony
    Coalson, Timothy S.
    Fischl, Bruce
    Andersson, Jesper L.
    Xu, Junqian
    Jbabdi, Saad
    Webster, Matthew
    Polimeni, Jonathan R.
    Van Essen, David C.
    Jenkinson, Mark
    [J]. NEUROIMAGE, 2013, 80 : 105 - 124
  • [7] Automatic Thalamus Segmentation on Unenhanced 3D T1 Weighted Images: Comparison of Publicly Available Segmentation Methods in a Pediatric Population
    Hannoun, Salem
    Tutunji, Rayyan
    El Homsi, Maria
    Saaybi, Stephanie
    Hourani, Roula
    [J]. NEUROINFORMATICS, 2019, 17 (03) : 443 - 450
  • [8] Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks
    Lucena, Oeslle
    Souza, Roberto
    Rittner, Leticia
    Frayne, Richard
    Lotufo, Roberto
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 98 : 48 - 58
  • [9] Thalamus segmentation based on the local diffusion direction: A group study
    Mang, Sarah C.
    Busza, Ania
    Reiterer, Susanne
    Grodd, Wolfgang
    Klose, Uwe
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (01) : 118 - 126
  • [10] volBrain: An Online MRI Brain Volumetry System
    Manjon, Jose V.
    Coupe, Pierrick
    [J]. FRONTIERS IN NEUROINFORMATICS, 2016, 10