In order to estimate growth rates based on biochemical indices of the liver of wild Japanese flounder (Paralichthys olivaceus), juveniles were reared at six ration levels (0, 0.5, 2, 4, 6 and 8% body weight day(-1)) in the laboratory for 14 days, and the relationship between their growth rates and biochemical indices (RNA/DNA, protein/DNA, triglyceride/DNA, phospholipid/DNA and cathepsin D activities) were determined. Positive and approximately linear relationships were seen between growth rates and the indices of RNA/DNA, protein/ DNA and phospholipid/DNA. The triglyceride/DNA ratio decreased with increasing growth rates up to approximately 1% body weight day(-1), then increased linearly with increasing growth rates. There was no significant correlation between growth rates and cathepsin D activity, and the highest values were obtained in the starved fish. Compared with laboratory-reared specimens, wild specimens of similar sizes were found to have significantly larger livers. The RNA/DNA, protein/DNA and phospholipid/DNA ratios of wild specimens fell in a broad range between ration groups of reared juveniles. The protein/DNA ratios of wild specimens were low and outside the range of the reared juveniles at six ration levels. In contrast, the levels of cathepsin D activity of wild fish were highest compared to the reared fish. Estimated growth rates of wild fish from the RNA/DNA, protein/DNA and phospholipid/DNA regressions obtained from the rearing experiment were 1.66, -1.74 and 0.10% day(-1), respectively. Based on our results, theRNA/DNA index may be regarded as the most valid and reliable growth estimator. It is noted that the larger liver size, the lower liver protein/DNA ratio and the unexpectedly high level of cathepsin D activities of wild specimens found in this study may reflect the different metabolic conditions of fish reared in the laboratory compared to those collected in the field.