We propose a new dynamic principal component CAW model (DPC-CAW) for time-series of high-dimensional realized covariance matrices of asset returns (up to 100 assets). The model performs a spectral decomposition of the scale matrix of a central Wishart distribution and assumes independent dynamics for the principal components' variances and the eigenvector processes. A three-step estimation procedure makes the model applicable to high-dimensional covariance matrices. We analyze the finite sample properties of the estimation approach and provide an empirical application to realized covariance matrices for 100 assets. The DPC-CAW model has particularly good forecasting properties and outperforms its competitors for realized covariance matrices.
机构:
Tokyo Univ Sci, Dept Math, Grad Sch Sci, Shinjyuku Ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Grad Sch Sci, Shinjyuku Ku, Tokyo 1628601, Japan
Hyodo, Masashi
Yamada, Takayuki
论文数: 0引用数: 0
h-index: 0
机构:
Kitasato Univ, Sch Pharm, Dept Clin Med Biostat, Div Biostat, Tokyo, JapanTokyo Univ Sci, Dept Math, Grad Sch Sci, Shinjyuku Ku, Tokyo 1628601, Japan
机构:
Univ Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, FranceUniv Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, France
Perrot-Dockes, Marie
Levy-Leduc, Celine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, FranceUniv Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, France
Levy-Leduc, Celine
Sansonnet, Laure
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, FranceUniv Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, France
Sansonnet, Laure
Chiquet, Julien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, FranceUniv Paris Saclay, UMR MIA Paris, AgroParisTech, INRA, F-75005 Paris, France